Kommjyrepcka ananmusa Ha mpeogau npomecu Bo EEC

4. PemiaBame HA NPeoHH Npouecu co npumena Ha PSCAD

TexkcroT K0j mTO CcrexyBa e npeseman o kuurata Neville Watson and Jos Arrillaga,
Power Systems Electromagnetic Transients Simulation, Published by: The Institution of
Electrical Engineers, London, United Kingdom, 2003.

4.1. Introduction

A continuous function can be simulated by substituting a numerical integration
formula into the differential equation and rearranging the function into an appropriate form.
Among the factors to be taken into account in the selection of the numerical integrator are the
error due to truncated terms, its properties as a differentiator, error propagation and frequency
response.

Numerical integration substitution (NIS) constitutes the basis of Dommel's EMTP [1]-
[3], which, as explained in the introductory chapter, is now the most generally accepted
method for the solution of electromagnetic transients. The EMTP method is an integrated
approach to the problems of:

e forming the network differential equations

e collecting the equations into a coherent system to be solved

e numerical solution of the equations.

The trapezoidal integrator (described in Appendix C) is used for the numerical
integrator substitution, due to its simplicity, stability and reasonable accuracy in most
circumstances. However, being based on a truncated Taylor's series, the trapezoidal rule can
cause numerical oscillations under certain conditions due to the neglected terms [4]. This
problem will be discussed further in Chapters 5 and 9.

The other basic characteristic of Dommel's method is the discretisation of the system
components, given a predetermined time step, which are then combined in a solution for the
nodal voltages. Branch elements are represented by the relationship which they maintain
between branch current and nodal voltage.

This chapter describes the basic formulation and solution of the numerical integrator
substitution method as implemented in the electromagnetic transient programs.

4.2. Discretisation of R, L, C Elements

4.2.1. Resistance

The simplest circuit element is a resistor connected between nodes k and m, as shown
in Figure 4.1, and is represented by the equation:

1
Lem (1) = E(Uk“} — Up (1)) (4.1)

Resistors are accurately represented in the EMTP formulation provided R is not too
small. If the value of R is too small its inverse in the system matrix will be large, resulting in
poor conditioning of the solution at every step. This gives inaccurate results due to the finite
precision of numerical calculations. On the other hand, very large values of R do not degrade
the overall solution. In EMTDC version 3 if R is below a threshold (the default threshold
value is 0.0005) then R is automatically set to zero and a modified solution method used.
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Figure 4.1: Resistor

4.2.2. Inductance

The differential equation for the inductor shown in Figure 4.2 is:

v = vk — vy =L
dt (4.2)
Rearranging:
t
l:km{i‘} = fkm{f—&r} +f (Vg — v dt
1—Ar (4.3)

Applying the trapezoidal rule gives:

: : f
Uem(t) = Uemit—Arn + EHUA = Um ) + (U — Vi )ir—an) 4.4)

At At

= Ikm(r—Arn + ﬂ“-’ﬁ.rf—.ﬁ.rl — V(i—an) + ﬂ“-'.tw — Vim(n)) (4.5)

|
ikm (1) = Idistory (t — AT) + F{U.{'U) — V(1))
eff (4.6a)

This equation can be expressed in the form of a Norton equivalent (or companion
circuit) as illustrated in Figure 4.3. The term relating the current contribution at the present
time step to voltage at the present time step (1/Refr) is a conductance (instantaneous term) and
the contribution to current from the previous time step quantities is a current source (History

term).
I—J.'m / AV 4 \V4 \

! !
1 1

Figure 4.2: Inductor
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Figure 4.3: Norton equivalent of the inductor
In equation 4.6 lyisory(t - At) = igm(t - At) + (AUV2L)(vi(t - At) - vin(t - At)) and
2L
Resp =—. 4.6b
eff =71 (4.6b)
The term 2L/At is known as the instantaneous term as it relates the current to the
voltage at the same time point, i.e. any change in one will instantly be reflected in the other.

As an effective resistance, very small values of L or rather 2L/At, can also result in poor
conditioning of the conductance matrix.
Transforming equation 4.6 to the z-domain gives:

Ikm(2) = 27" km (2) + f—é{l + 27 (Vi(2) = Vin(2))
Rearranging gives the following tra-insfer between current and voltage in the z-domain:
Iim (2) _Ar(14+z7h
(Vi@ = Vm(2)) 2L (1—27") @7

4.2.3. Capacitance
With reference to Figure 4.4 the differential equation for the capacitor is:
d(vi(t) — v ()
dt (4.8)

Ean | ‘

- H i

Ik (1) = C

Figure 4.4: Capacitor
Integrating and rearranging gives:
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T L
Uemie) = (Pkiry — Vi) = (Ukir—An — Umir—an) + _,f igm At
C Ji-a (4.9)
and applying the trapezoidal rule:
oy
rim (1) = (g (1) — vulr )} = (oplf — AF) — vy r — AN} + Eﬂmf”""im“ — Arh) (4'10)
Hence the current in the capacitor is given by:
- -
Fim (1) = — (W) = v (11} = g (1 — AS) — -“E-nu[r — Ar) = vy = AL}
v Af
I
= [ee(Fy — v (] + THisione F — AF)
Rer : (4.11)

which is again a Norton equivalent as depicted in Figure 4.5. The instantaneous term in
equation 4.11 is:

At
R,&_ﬁ" —_—
2C (4.12)
k F..h.lr[-’l
o >
A
"hisrory (1= A =iy, (1— A1)
2C
T(.r (v (1= Af)—v,, (t— AB)
At
(Vity= Vinie)) Rop=——
eff 2 '

m
Figure 4.5: Norton equivalent of the capacitor

Thus very large values of C, although they are unlikely to be used, can cause ill
conditioning of the conductance matrix.
The History term represented by a current source is:
2C
J'Hihmr}-:r—m; = —ikm(t—An — — (Vk(t—A1) — Um(r—Ar))
At (4.13)

Transforming to the z-domain gives:

_, 20 ,o2c
Iy = =27 Iy — — (Vi — Vi )z + — (Vi — Vi)
At At (4.14)
Im  2C(1—z7h
Vi —Vwm)  At(14+z7D (4.15)

It should be noted that any implicit integration formula can be substituted into a
differential equation to form a difference equation (and a corresponding Norton equivalent).
Table 4.1 shows the Norton components that result from using three different integration
methods.
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Table 4.1: Norton components for different integration formulae

Integration method | Req | lHistory
Inductor
L .
Backward Euler — -1
At
2L . At
Trapezoidal — In-1+-7"Vn-
pez At UYL
3L 4. 1.
Gear 2™ order — .
QAL 3 132
Capacitor
At C
Backward Euler — ——Vn
C At
At
Trapezoidal — N
p 2C AtD 1~ 'n-1
2At 2C C
Gear 2™ order — | ———Vp1———Vno2
3C At 2At

4.3. Dual Norton Model of the Transmission Line

A detailed description of transmission line modelling is deferred to Chapter 6. The
single-phase lossless line [4] is used as an introduction at this stage, to illustrate the simplicity
of Dommel's method.

Consider the lossless distributed parameter line depicted in Figure 4.8, where L' is the
inductance and C' the capacitance per unit length. The wave propagation equations for this
line are:

dui(x,t LOi(x, f
_HF_} ot SR E)

ax at (4.22)
B H.ift,n 1) - C,Hu{x, 1)
0x dt (4.23)
and the general solution:
i(x,t) = fix —mt) + Ho(x + 1) (4.24)

vix,=Z:- filx—wt)—Z - folx + wt) (4.25)
with fi(X - ot) and f,(X + wt) being arbitrary functions of (X - ot) and (X + wt) respectively. f(x
- ot) represents a wave travelling at velocity o in a forward direction (depicted in Figure 4.8)
and f,(X + ot) a wave travelling in a backward direction. Z¢, the surge or characteristic
impedance and o, the phase velocity, are given by:

LF

Zo =4 —
C’ (4.26)
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I
vL'C 4.27)

Multiplying equation 4.24 by Zc and adding it to, and subtracting it from, equation
4.25 leads to:

v(x, )+ Zc - i(x.t) =2Z¢ - fi(x — @) (4.28)
v(x,f) —Zc - i(x,t) = =2Z¢c - fa(x + ©t) (4.29)

It should be noted that v(x, t) + Zc ~i(X, t) is constant when (X - ot) is constant. If d is
the length of the line, the travelling time from one end (k) to the other end (m) of the line to
observe a constant V(X, t) + Z¢ - i(X, t) is:

r=din =dy LIt (4.30)

i) —

Hence

[_IA.:I —T)+ z(- . jknr“ —T) = llm{” - Z{- . {—f-“m{”} (431)

Rearranging equation 4.31 gives the simple two-port equation for im, i.e.
I vix, ) m

Tem ™ _— I”r&
.

o —
i -|

x=0 x=d
Figure 4.8: Propagation of a wave on a transmission line

imk (1) = 7 U () + It — 1)

(4.32)

where the current source from past History terms is:

I :
Iy(t — 1) = _EUI{U —T) —ijm(t — T)
, (4.33)

Similarly for the other end

|
iem () = ——ve(t) + I (t — 1)
Zc (4.34)

where

|
it — 1) =———vp{t — 1) —imp(t — 7T)
Zc

The expressions (X - ot) = constant and (X + wt) = constant are called the characteristic
equations of the differential equations.

Figure 4.9 depicts the resulting two-port model. There is no direct connection between
the two terminals and the conditions at one end are seen indirectly and with time delays
(travelling time) at the other through the current sources. The past History terms are stored in
a ring buffer and hence the maximum travelling time that can be represented is the time step
multiplied by the number of locations in the buffer. Since the time delay is not usually a
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multiple of the time-step, the past History terms on either side of the actual travelling time are
extracted and interpolated to give the correct travelling time.

iku.’“) fr.'rk“)
— -—

i=1)
v (1)
‘fur (r— t)

Figure 4.9: Equivalent two-port network for a lossless line

4.4, Network Solution

With all the network components represented by Norton equivalents a nodal
formulation is used to perform the system solution.
The nodal equation is:

[G1v(z) = i(1) + Dyisory (4.35)

where:

e [G] is the conductance matrix

e v(1) is the vector of nodal voltages

¢ i(1) is the vector of external current sources

e luisiory 1S the vector current sources representing past history terms.

The nodal formulation is illustrated with reference to the circuit in Figure 4.10 [5]
where the use of Kirchhoff's current law at node 1 yields:

f12(¢) + 13 (1) +ipa(t) +i15(t) =i (¢) (4.36)

Expressing each branch current in terms of node voltages gives:

|
I12(t) = E(U] (f) — valt))

(4.37)
) At
i13(t) = 5 (v1{f) — v3(r)) + I13(t — Ar)
2L (4.38)
2C
114(t) = —(v1(1) — v4(2)) + L4t — A1)
At (4.39)
. 1
115(t) = =1 (t) + 5t — 1)
Z (4.40)
Substituting these gives the following equation for node 1:
]—+E+£+l ~m—l EH—E -~{r}—£~::}
R TR L T R R T
= Ij(t — At) — [zt — Ar) = Figlr — Ar) = Lis(r — At) (441)
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Note that [G] is real and symmetric when incorporating network components. If
control equations are incorporated into the same [G] matrix, the symmetry is lost; these are,
however, solved separately in many programs. As the elements of [G] are dependent on the
time step, by keeping the time step constant [G] is constant and triangular factorisation can be
performed before entering the time step loop. Moreover, each node in a power system is
connected to only a few other nodes and therefore the conductance matrix is sparse. This
property is exploited by only storing non-zero elements and using optimal ordering
elimination schemes.

©,

Figure 4.10: Node 1 of an interconnected circuit
Some of the node voltages will be known due to the presence of voltage sources in the
system, but the majority are unknown. In the presence of series impedance with each voltage
source the combination can be converted to a Norton equivalent and the algorithm remains
unchanged.

Example: Conversion of voltage sources to current sources
To illustrate the incorporation of known voltages the simple network displayed in

Figure 4.11 (a) will be considered. The task is to write the matrix equation that must be solved
at each time point.

I.=V, sin{m)/R
Figure 4.11: Example using conversion of voltage source to current source
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Converting the components of Figure 4.11 (a) to Norton equivalents (companion
circuits) produces the circuit of Figure 4.11 (b) and the corresponding nodal equation:

At

At

= — 0 Vi sin(er)

R 2L 2L, 3 ._’R_ I“"’-l
At At 4 I 2C, 1 L’ 1

—_— — J— — —_—— 1 .
2L| IL] RE At R:ﬁ_ L'; f!r“ -'r.l'f;-l
l 1 At : o
0 P — hy
L R Rs  2L>

(4.42)

Equation 4.42 is first solved for the node voltages and from these all the branch
currents are calculated. Time is then advanced and the current sources representing History
terms (previous time step information) are recalculated. The value of the voltage source is
recalculated at the new time point and so is the matrix equation. The process of solving the
matrix equation, calculating all currents in the system, advancing time and updating History
terms is continued until the time range of the study is completed.

As indicated earlier, the conversion of voltage sources to Norton equivalents requires
some series impedance, i.e. an ideal voltage source cannot be represented using this simple
conductance method. A more general approach is to partition the nodal equation as follows:

[Guul [Gukl| (vu(®)\ _ [iu(?) 4 Lynistory | _ (1u

[Gkul [Grkl] \vk(t) ix (1) Lk History Ik (4.43)
where the subscripts U and K represent connections to nodes with unknown and known
voltages, respectively. Using Kron's reduction the unknown voltage vector is obtained from:

[Guulve () = iv (1) + Lynisory — [Guk vk (1) =1}, (4.44)

The current in voltage sources can be calculated using:
[Gkulvu () +[Gkk1vk (1) — Ik History = ik (1) (4.45)

The process for solving equation 4.44 is depicted in Figure 4.12. Only the right-hand
side of this equation needs to be recalculated at each time step. Triangular factorisation is
performed on the augmented matrix [Gyy Guk] before entering the time step loop. The same
process is then extended to iu(t) - Inisory at each time step (forward solution), followed by
back substitution to get Vy(t). Once Vy(t) has been found, the History terms for the next time
step are calculated.
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v I
. vt.-' — ];
Vi I
(1) [Guw Gukl ¥ Iy
Gi:‘b‘ GL‘K . VU e It,
0
v}k

0

(1) Triangulation of matrix
(2) Forward reduction
(3) Back substitution
Figure 4.12: Network solution with voltage sources
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4.5. llpumepu

IIpumep 4.1. RC xonoro ox cnukara 4.13 co mapamerpu R = 1000 Q u C = 100 pF e
IIOBP3aHO Ha HJEalleH HAIOHCKU TeHepaTop co HamoH U,. Kopucrejku ro mMeromor Ha
Tpare3Ha UHTerpaluja co BpeMeHCKH uekop o 50 ps 1a ce oapean HAmoHOT Ha ja3enoT 1 1o
BPEMEHCKHOT MOMEHT t = 1 s 3a cnegHuTE /Ba Clly4au:

a) Ug=12V,

0) Ug = 12'sin(1007t) V.

Cnauka 4.13. RC — koio
Pemenue

ExBHUBaJIEHTHOTO KOJIO 32 IPUMEHA Ha MPABHIOTO 3a Tpare3Ha MHTErpaiyja € JaieHo
Ha ciukata 4.14. [TapamerpuTe Ha OTIIOPHUKOT Rc U CTpyjHHOT TeHepaTop ly co Kou mTo €
3aMEHEeT KOHJIEH3aTOpOT T'M mpecMmeTyBame crnoper penauunte (4.12) u (4.13) Ha caeaHuor
HA4YMH

At 50

Re=— =2 __0250, 4.46

C7oCc 2100 (4.46)

Iy (t-At) =iy (t—At)—@. (4.47)
C

i, R 1
_|_
_|_
Uy 1, (A1) R. Iﬂ,

Cnuka 4.14. ExBuBanentHo k010 3a RC — komoto ox ciukata 4.13

Cropen, METOZIOT Ha HE3aBUCHHM HAIMOHM 3a KOJOTO of ciukara 4.14 moxxkeme naa ja
HaIMIIeMe CJIeIHaTa PaBeHKa

Gll 'Ul = Igl N (448)
OJHOCHO

11 Ug

—t— U =—2— Iy (t—At), 4.49

{R ch S H( ) (4.49)

0] KaJie IITO JoOnBaMe
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u
Fg ~ 1y (t-A)
U = T 1 (4.50)
R Re
Crpyjara i) koja ITO HU € oTpeGHa 3a pecMeTka Ha |y (t—At) usHecysa
Ug —U

. g 1

I = 4.51
1 R (4.51)

3a ga ro mpecmeraMe OapaHMOT HAIOH ke ja KopucTuMme paBeHkaTa (4.50) 3a cute
BpeMeHCKH MoMeHTH o 0 1o 1 s co yekop ox 50 us mpu MITO BO CEKOj YEKOp BPEIHOCTA Ha
cTpyjara Iki(t—uﬁt) KOja IITO C€ OJIHECYBa Ha €leH YeKOp Mpel pas3rielyBaHUOT Ke ja
nmpecMeTyBaMe co ToMoIlln Ha penanujara (4.47) oakako MPETXOJHO Ke ja TpecMeTame

cTpyjara I; co momoin Ha penanujara (4.51). Ilexara mocramka € majaeHa BO Mporpamara
Primer 4 la.m Koja IITO ro UMa CIETHUOT U3TIIE]

clear; clc;

dt = 50e-6;
Tkraj = 1
R = 1000
C = 100e-6
Ug = 12;
RC = dt /7 (2*C);
N = Tkraj / dt;
t = zeros(N, 1);
vl = zeros(N, 1);
il = zeros(N, 1);
IH = 0;
for i =1 - N
t() = 1 * dt;
ifi>1
IH = -11(i-1) - v1(i-1)/RC;
end
vli(i) = (Ug/R - IH)/(1/R + 1/RC);
i1(i) = (Ug - v1(i))/R;
end
plot(t,vl);

Bo Hea mpecMmeTrkuTe ce M3BeAyBaaT BO paMKHUTe Ha eneH for mukiayc co N uekopu
kaze mro e N = Tkraj / dt. Bo nmpBuoT yekop BpeaHocra Ha ctpyjara IH He ce nmpecmerysa,
OJIHOCHO C€ 3€Ma JIeKa Taa € HyJja, a 3a OCTaHaTHTE Taa ce mpecMeTyBa co u3pasort (4.47). Co
aKTHBUPAkE Ha MporpaMara ro 1o00MBamMe peleHneTo MpruKakaHo Ha ciikara 4.15.

3a ciyyajot mox 0) OapaHMOT HAINOH € MpHUKakaH Ha ciukara 4.16 a Toj e nmpecMeTaH
CO TIporpamara Koja mTo € AajeHa Bo gatorekara Primer 4 1b.m koja mTo ro uma CIeIHUOT
u3rien

clear; clc;
dt = 50e-6;
Tkraj = 0.1;
= 1000;

= 12;
=dt / (2* C);
= Tkraj / dt;
= zeros(N, 1);
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vl = zeros(N, 1);
il = zeros(N, 1);
IH = O;
for i =1 : N
t() = 1 * dt;
ifi>1
IH = -11(i-1) - v1(i-1)/RC;
end
vi(i) = (Ug*sin(100*pi*t(i))/R - IH)/(1/R + 1/RC);
i11(i) = ((Ug*sin(100*pi*t(i)) - v1i(i))/R;
end
plot(t,vl);

 Figure 1 Elfﬁl@l

File Edit View Insert Tools Deskiop Window Help 1

Deds k faaN® €08 50

L L L L
06 07 0s 09 1

Cnuka 4.15. Hanon Ha jazenot 1 Bo RC — konoTo 3a ciydajot nog a)

 Figure 1 Elfﬁl@l

File Edit View Insert Tools Deskiop Window Help

Deds k faaN® €08 50

o L L 1 L 1 L L L L
0 ool 002 003 004 005 006 007 0O0DS 009 01

Cnuka 4.16. Hamon Ha jasesnor 1 Bo RC — konoTo 3a ciy4ajot nox 0)

O 0 m
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IIpumep 4.2. RLC xonoro ox cnukata 4.17 co mapamerpu R = 3,6 Q,L = 0,57 Hu
C = 100 pF e noBp3aHo Ha MicaleH HAIIOHCKH IEHEPATOp CO KOHCTAaHTEH HamoH U, = 12 V.
Kopucrejku ro MeTofoT Ha Tpame3Ha HHTErpamuja co BpeMEHCKH udekop ox 50 ps ma ce
OJIpeIIN CTpYyjaTa BO KOJOTO J0 BPEMEHCKHOT MOMEHT t =1 s.

i R ¢ L

+ + CIJF
u u u
g T

Cnauka 4.17. RLC — koo
Pemenue

ExBHUBaJIEHTHOTO KOJIO 32 MpHUMEHA Ha MPAaBUJIOTO 3a Tpale3Ha UHTErpaiuja € JajieHo
Ha ciukara 4.18. [TapameTrpuTe Ha OTHOPHHUKOT Rc M cTpyjHHOT TeHepaTop lyc co xou mTo €
3aMEHET KOHACH3aTOpPOT TH mpecMmeTyBame crmopen penanuute (4.12) m (4.13), moneka
napaMeTpuTe Ha OTHOPHUKOT Ry U CTpyjHHOT reHepaTop lyr co KOM IITO € 3aMEHET KaJleMOT
TU IpecMeTyBame criopen penanuute (4.6a) u (4.6b) Ha clieTHUOT HAYMH

At 50
Re=— =2 __0250, 4.52
€7 2Cc 2-100 (452)
IHC(t—At):—il(t—At)—M, (4.53)
Re
2L 2.0,57
R === 238000, (4.54)
LAt 50.10°°
|HL(t—At)=i1(t—At)+ul(t_m):z(t_“). (4.55)
L
1 (t-Ap)
+
u,

Cnuka 4.18. ExBuBanenrno kono 3a RLC — konoro oz civkara 4.17

Cnopen METOJIOT Ha HE3aBHCHM HAIOHW 3a KOJIOTO Of ciukata 4.17 Moxkeme na ja
HaIuIlIeMe CJIeIHaTa PaBeHKa

{Gn Glz]{ul}: Ig1 (4.56)
Gy Gy U] |ig2

KaJi€e IITO
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1 1! 1
_t— _
R R_ i R.
G= 1T L (4.57)
RL i R Rec
9
ig R Hb | (4.58)
Ihe = The
HamonnTte Ha He3aBUCHMTE ja3nu I'M JoOMBaMe CO pellaBame HAa CHCTEMOT PaBEHKH
(4.54)
U ]
=Z-ig, (4.59)
)
KaJIe IITO
Z=G"" (4.60)
Crpyjara i; koja mTO HU € MOTpeOHA 3a mpecMeTka Ha | (t—At) u lye (t—At)
U3HECYyBa
Ug — Uy

4.61)

3a 1a ru mpecMeTame HaloHUTE Ha HE3aBHCHUTE ja3iH Ke ja KOPUCTHME paBEHKaTa
(4.59) 3a cute BpeMeHncku MmoMmeHTH o 0 10 1 s co yekop ox 50 ps mpu MTO BO CEKO] YEKOP
BPEIHOCTUTE Ha CTpyUTE |1y (t —At) ulye (t —At) KOH IIITO C€ OJJHECYBAaT Ha CACH YCKOP
npes] pa3rielyBaHUOT Ke M MpecMeTyBaMe co oMol Ha penanuute (4.53) u (4.55) oxkaxo

NPETXO/HO KE ja mpecMeTaMe cTpyjaTa iy co momorn Ha penamujara (4.61). Ilenara mocranka e
najieHa Bo mporpamara Primer 4 2.m koja IITO r0 UMa CIETHUOT U3TIE]

clear; clc;

dt = 50e-6;

Tkraj = 1;

R = 3.6;

L = 0.57;

C = 100e-6;

Ug = 12;

RL = 2*L / dt;

RC = dt /7 (2*C);

G =1L
1/R + 1/RL -1/RL
-1/RL 1/RL + 1/RC
1:

Z = inv(G);

N = Tkraj / dt;

t = zeros(N, 1);

vl = zeros(N, 1);

v2 = zeros(N, 1);

il = zeros(N, 1);

IHL = O;

IHC = 0;

for i =1 : N
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t(i) = i1 * dt;
ifi>1
IHL = i1(i-1) + (v1(i-1) - v2(i-1))/RL;
IHC = -11(i-1) - v2(i-1)/RC;
end
D=1[
Ug/R - THL
IHL - IHC
1:
Rez = Z * D;
v1(i) = Rez(1);
v2(i) = Rez(2);
11(i) = (Ug - vi(i))/R;
end
plot(t,il);

Bo Hea mpecmerkuTe ce m3BeAyBaaT BO paMKuTe Ha eneH for mukmyc co N dekopu
kage mro ¢ N = Tkraj / dt. Bo npBuor uekop Bpennocra Ha ctpyure IH u IC He ce
IpecMeTyBaaT, OJHOCHO C€ 3eMa JeKa THhe ce enHakBM Ha Hynaa. Co akTHBHpame Ha
nporpamara ro nobuBame OOJIMKOT Ha CTpyjaTra nmpukakaH Ha ciaukara 4.19. Jlokonky Bo
KOMaHJIHUOT mpoctop Hamuieme plot(t,vl) wmm plot(t,v2) ke ro modbweme u OOJUKOT Ha

HaroHUTE Ha jasnute 1 u 2.
) Figure 1 g@g|
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