

Еднофазен вод – простопериодичен режим

$$i(x, t) = \sqrt{2} \cdot I(x) \cdot \sin [\omega t + \psi(x)]$$

$$u(x, t) = \sqrt{2} \cdot U(x) \cdot \sin [\omega t + \theta(x)]$$

$$i(x, t) \Rightarrow \underline{I} \qquad \frac{\partial i(x, t)}{\partial t} \Rightarrow j\omega \underline{I} \qquad \frac{\partial i(x, t)}{\partial x} \Rightarrow \frac{d\underline{I}}{dx}$$

$$u(x, t) \Rightarrow \underline{U} \qquad \frac{\partial u(x, t)}{\partial t} \Rightarrow j\omega \underline{U} \qquad \frac{\partial u(x, t)}{\partial x} \Rightarrow \frac{d\underline{U}}{dx}$$

$$-\frac{d\underline{I}}{dx} = g \cdot \underline{U} + j\omega c \cdot \underline{U} = (g + j\omega c) \cdot \underline{U} = \underline{y} \cdot \underline{U}$$

$$-\frac{d\underline{U}}{dx} = r \cdot \underline{I} + j\omega l \cdot \underline{I} = (r + j\omega l) \cdot \underline{I} = \underline{z} \cdot \underline{I}$$

$$\underline{y} = g + j\omega c$$

$$\underline{z} = r + j\omega l$$
ЕДнофазен вод — општо решение

$$\underbrace{U_1}_{1} \qquad \underbrace{I_1}_{1} \qquad r, x, g, b \qquad \underbrace{I_2}_{2} \\ I = \underbrace{U_2}_{1} \qquad \underbrace{d\underline{U}}_{dx} = -\underline{z} \cdot \underline{I}$$
Бранови равенки
$$\frac{d^2 \underline{U}}{dx^2} = \underline{z} \cdot \underline{y} \cdot \underline{U}$$

$$\underline{U} = \underline{C}_1 e^{-\underline{\gamma}x} + \underline{C}_2 e^{\underline{\gamma}x}$$
$$\underline{I} = \underline{C}_3 e^{-\underline{\gamma}x} + \underline{C}_4 e^{\underline{\gamma}x}$$

 $\underline{\gamma} = \sqrt{\underline{z} \cdot \underline{y}}$ коефициент на простирање

Скопје, 2019 5/45

Еднофазен вод – општо решение

МТ (ПЕЕС)

MT (NEEC)

$$\underline{I} = -\frac{1}{\underline{z}} \frac{d\underline{U}}{dx} = \frac{1}{\underline{z}} \underline{C}_1 \underline{\gamma} e^{-\underline{\gamma}x} - \frac{1}{\underline{z}} \underline{\gamma} \underline{C}_2 e^{\underline{\gamma}x}$$
$$\underline{U} = \underline{C}_1 e^{-\underline{\gamma}x} + \underline{C}_2 e^{\underline{\gamma}x}$$

$$\underline{I} = \frac{\underline{C}_1}{\underline{Z}_c} e^{-\underline{\gamma}x} - \frac{\underline{C}_2}{\underline{Z}_c} e^{\underline{\gamma}x}$$

$$\frac{\underline{U}}{\underline{I}}\Big|_{x=l} = \underline{U}_2$$
$$\underline{I}\Big|_{x=l} = \underline{I}_2$$

$$\underline{Z}_{c}=\sqrt{\frac{\underline{z}}{\underline{y}}}$$
 карактеристична импеданција

BHMC

Скопје, 2019 6 / 45

Трифазен вод – моќност на крајот

Дадена е моќноста на крајот на водот $\underline{S}_2 = P_2 + jQ_2$ Струјата на крајот на водот изнесува

$$\underline{I}_2 = \frac{\underline{S}_2^*}{\sqrt{3}\underline{U}_2^*} = \frac{P_2 - jQ_2}{\sqrt{3}\underline{U}_2^*}$$

$$\begin{split} \underline{U}_{1} &= \underline{U}_{2} \cosh \underline{\gamma} l + \underline{Z}_{c} \frac{\underline{S}_{2}^{*}}{\underline{U}_{2}^{*}} \sinh \underline{\gamma} l = \underline{U}_{2} \left(\cosh \underline{\gamma} l + \underline{Z}_{c} \frac{\underline{S}_{2}^{*}}{U_{2}^{2}} \sinh \underline{\gamma} l \right) \\ \underline{I}_{1} &= \frac{\underline{U}_{2}}{\sqrt{3}\underline{Z}_{c}} \sinh \underline{\gamma} l + \frac{\underline{S}_{2}^{*}}{\sqrt{3}\underline{U}_{2}^{*}} \cosh \underline{\gamma} l = \frac{\underline{U}_{2}}{\sqrt{3}\underline{Z}_{c}} \left(\sinh \underline{\gamma} l + \underline{Z}_{c} \frac{\underline{S}_{2}^{*}}{U_{2}^{2}} \cosh \underline{\gamma} l \right) \\ \underline{S}_{N2} &= \frac{U_{2}^{2}}{\underline{Z}_{c}^{*}} \quad \text{природна моќност на водот} \end{split}$$

Трифазен вод – природна моќност на водот

MT (DEEC)

MT (NEEC)

MT (NEEC)

$$\underline{\gamma} = \alpha + j\beta$$

$$\underline{U}_1 = \underline{U}_2 \left(\cosh \underline{\gamma} l + \frac{\underline{S}_2^*}{\underline{S}_{N2}^*} \sinh \underline{\gamma} l \right)$$

$$\underline{I}_1 = \frac{\underline{U}_2}{\sqrt{3}\underline{Z}_c} \left(\sinh \underline{\gamma} l + \frac{\underline{S}_2^*}{\underline{S}_{N2}^*} \cosh \underline{\gamma} l \right)$$

ако е
$$\underline{S}_2 = \underline{S}_{N2}$$
, тогаш е и $\underline{I}_2 = \frac{\underline{U}_2}{\sqrt{3}\underline{Z}_c}$
$$\underline{U}_1 = \underline{U}_2 e^{\underline{\gamma}l} \Rightarrow U_1 = e^{\alpha} U_2 \qquad e^{\alpha} \approx$$

$$\underline{I}_1 = \frac{\underline{U}_2}{\sqrt{3}\underline{Z}_c} e^{\underline{\gamma}l} = \underline{I}_2 e^{\underline{\gamma}l} \Rightarrow I_1 = e^{\alpha}I_2$$

Скопје, 2019 12 / 45

1

□ ► < @ ► < E ► < E ► < 0 < 0</p>

Скопје, 2019 10/45

Упростени формули за $\underline{\gamma}$ и \underline{Z}_c

$$\sqrt{1+a} = 1 + \frac{a}{2} - \frac{a^2}{8} + \frac{a^3}{16} - \dots$$
$$\underline{Z}_c = \sqrt{\frac{r+jx}{jb}} = \sqrt{\frac{x}{b}} \cdot \sqrt{1-j\frac{r}{x}} = \sqrt{\frac{x}{b}} \cdot \left(1-j\frac{r}{2x}\right)$$
$$\underline{\gamma} = \sqrt{(r+jx) \cdot jb} = j \cdot \sqrt{xb} \cdot \sqrt{1-j\frac{r}{x}} = j \cdot \sqrt{xb} \cdot \left(1-j\frac{r}{2x}\right)$$

Пример 2.1 од книгата: 220 kV далекувод со должина l = 400 km има подолжни параметри $r = 0,09 \,\Omega/\text{km}$; $x = 0,422 \,\Omega/\text{km}$; g = 0; $b = 2,62 \,\mu\text{S/km}$. Водот е оптоварен на крајот со моќност $P_2 = 70 \text{ MW}$ при соз $\varphi_2 = 0,95$; ($Q_2 = P_2 \cdot \text{tg} \,\varphi_2 = 70 \cdot 0,328 = 23,1 \,\text{Mvar}$) при напон $U_2 = 220 \cdot e^{j0^\circ} \,\text{kV}$. Потребно е да се пресмета комплексната вредност на напонот на почетокот од водот.

Во книгата е работено со упростени формули за <u>ү</u> и <u>Z</u>_c и е добиен следниот резултат: <u>ү</u> = $(0, 112 \cdot 10^{-3} + j1, 0515 \cdot 10^{-3}) 1$ /km, <u>Z</u>_c = $(406 - j43, 8) \Omega$, <u>U</u>₂ = $235 \cdot e^{j12,8^{\circ}}$ kV

・ロア・雪マ・ヨア・ヨア

Скопје, 2019 13/45

Пример 1

MT (REEC

Идеални водови – упростувања

Под идеален вод (вод без загуби) се подразбира вод за кој важи r = 0 и g = 0.

Реалните преносни водови со големи должини во нормалните режими на работа се многу слични со идеалните. Идеалните водови многу полесно се проучуваат.

$$\underline{\gamma} = \sqrt{(r+jx) \cdot (g+jb)} = j\sqrt{xb} = j\beta$$

 $\underline{Z}_c = \sqrt{\frac{r+jx}{g+jb}} = \sqrt{\frac{x}{b}} = Z_c \Leftarrow$ реален број
 $\cosh \underline{\gamma} l = \cosh j\beta l = \cos \beta l$

・ロト・日本 ・ 日本 ・ 日本 ・ 日本

Скопје, 2019 15 / 45

 $\sinh \gamma l = \sinh j\beta l = j \sin \beta l$

Идеални водови – равенки

Упростени равенки $\beta = 0,06^{\circ}/\mathrm{km}$ $\underline{U}_1 = \underline{U}_2 \cos\beta l + j\sqrt{3}Z_c \underline{I}_2 \sin\beta l$ $\underline{I}_1 = j \frac{\underline{U}_2}{\sqrt{3}Z_2} \sin\beta l + \underline{I}_2 \cos\beta l$ $\underline{U}_1 = \underline{U}_2 \left(\cos\beta l + j \frac{\underline{S}_2^*}{P_{N2}} \sin\beta l \right)$ $\underline{I}_{1} = \frac{\underline{U}_{2}}{\sqrt{3}Z} \left(j\sin\beta l + \frac{\underline{S}_{2}^{*}}{P_{N2}}\cos\beta l \right)$ Пренос на природна моќност $\underline{S}_2 = P_{N2} = U_2^2/Z_c$ $\underline{U}_1 = \underline{U}_2 e^{j\beta l} \Rightarrow U_1 = U_2, \,\, U_2$ доцни за агол βl $\underline{I}_1 = \frac{\underline{U}_2}{\sqrt{3}Z_s} e^{j\beta l} = \underline{I}_2 e^{j\beta l} \Rightarrow I_1 = I_2$ Идеални водови – $\underline{S}_2 = P_2 = P_{N2}$ При пренос на природна моќност ефективната вредност на напонот и струјата по должина на водот не се менува $U(x) = U_1 = \text{const.}$ $I(x) = \frac{U(x)}{\sqrt{3}Z} = \text{const.}$ ▶ ▲御 ▶ ▲臣 ▶ ▲臣 ▶ □臣 = ∽○≪ Скопје, 2019 17/45 Идеални водови – $\underline{S}_2=P_2
eq P_{N2}$ • $P_2 < P_{N2}$ Водот произведува реактивна моќност повеќе отколку што троши, т.е. преовладува капацитивноста на водот. Со оддалечување од неговиот почеток напонот расте. • $P_2 > P_{N2}$ Водот троши реактивна моќност повеќе отколку што произведува, т.е. преовладува индуктивноста на водот. Со оддалечување од неговиот почеток напонот опаѓа. $P_2 < P_N$ $P_2 = P_N$ $P_2 > P_N$ x/l< 日 > < 回 > < 回 > < 回 > < 回 >

Скопје, 2019

MT (DEEC)

Идеални водови – $U_1 = \text{const.}$ и $U_2 = \text{const.}$

Случај кога се работи за многу долг вод, на чијшто почеток и крај се наоѓаат две електрични централи (или пак два одвоени ЕЕС кои можат да се еквивалентираат на тој начин), кои ги држат ефективните вредности на напоните U_1 и U_2 на константна вредност.

Идеални водови – празен од, $I_2 = 0$

Режимот на празен од кај долгите преносни водови е ретка, но многу непријатна и непожелна појава: $U_2 > U_1$ – Ферантиев ефект.

$$\underline{U}_1 = \underline{U}_2 \cos\beta l \Rightarrow \underline{U}_2 = \frac{\underline{U}_1}{\cos\beta l} \Rightarrow U_2 > U_1$$
$$\underline{I}_1 = j \frac{\underline{U}_2}{\sqrt{3}Z_c} \sin\beta l$$

На почетокот од водот тече струја која има чисто капацитивен карактер, во режимот на празен од водот произведува реактивна моќност

$$Q_0 = \operatorname{Imag}(\sqrt{3}\underline{U}_1\underline{I}_1^*) = \frac{U_1^2}{Z_c} \operatorname{tg} \beta l$$

ロト (母) (臣) (臣) (臣) (の)

Скопје, 2019 20/45

Ферантиев ефект кај долги неоптоварени водови

Упростена π -заменска шема

Упростени изрази за приближно определување на π -заменска шема за случај кога должината $l \leq 1000 \, {\rm km}$. Хиперболичните функции се разложуваат во ред и притоа се уважуваат само првите два члена од редот.

$$\frac{\underline{Z}_p}{\underline{Z}_p} = k_r \cdot (r \cdot l) + jk_x \cdot (x \cdot l)$$
$$\frac{\underline{Y}_p}{\underline{Z}_p} = k_b \cdot (b \cdot l)$$

Кенелиеви коефициенти

MT (NEEC)

$$k_r = 1 - xb\frac{l^2}{3}$$

$$k_x = 1 - \left(xb - \frac{b}{x}r^2\right)\frac{l^2}{6} \approx 1 - xb\frac{l^2}{6}$$

$$k_b = 1 - xb\frac{l^2}{12}$$

-

25/45

Скопје, 2019

Зависност на Кенелиевите коефициенти од должината на водот

<i>l</i> (km)	k _r	k _X	k _b	
100	0,99633	0,99817	1,00091	
150	0,99175	0,99588	1,00206	
200	0,98533	0,99267	1,00367	
250	0,97708	0,98854	1,00573	
300	0,96700	0,98350	1,00825	
350	0,95508	0,97754	1,01123	
400	0,94133	0,97067	1,01467	
450	0,92575	0,96288	1,01856	
500	0,90833	0,95417	1,02292	
550	0,88908	0,94454	1,02773	
600	0,86800	0,93400	1,03300	
650	0,84508	0,92254	1,03873	
700	0,82033	0,91017	1,04492	
750	0,79375	0,89688	1,05156	
800	0,76533	0,88267	1,05867	
850	0,73508	0,86754	1,06623	
900	0,70300	0,85150	1,07425	
950	0,66908	0,83454	1,08273	
1000	0,63333	0,81667	1,09167	
			• • • • • • • • • •	→ < ≣)
	DH	MC		Cuerie 1

Пример 2.2 од книгата: 220 kV преносен вод со должина l = 400 km ги има следните карактеристики (пример 2.1): $\underline{z} = (0, 09 + j0, 422) \Omega/\text{km}$ и $\underline{y} = j2, 62 \,\mu\text{S/km}$. Да се одредат параметрите на точната и приближната π -заменска шема на дадениот вод.

Приближна π -заменска шема

$$\underline{Z} = \underline{z} \cdot l = (0, 09 + j0, 422) \cdot 400 = (36 + j168, 8) \Omega$$

$$\underline{Y}/2 = j \cdot bl/2 = j \cdot 2, 62 \cdot 400/2 = j524 \,\mu\text{S}$$

Точна π -заменска шема

$$\underline{Z}_p = \underline{Z}_c \sinh \underline{\gamma} l = (33, 905 + j164, 087) \Omega$$
$$\underline{Y}_p = \frac{\cosh \underline{\gamma} l - 1}{\underline{Z}_c \sinh \underline{\gamma} l} = (1, 707 + j531, 857) \mu S$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Скопје, 2019 28/45

Пример 3

MT (NEEC)

		programi/primer_2_2.m		
1 clea 2 z = 3 y = 4 l = 5 Z = 6 Y_pc 7 Zc = 8 gama 9 Zp = 10 Yp_p	r 0.09 + 1j*0.422; 1j*2.62e-6; 400; z*1 ilovina = y*1/2 : sqrt(z/y); i = sqrt(z*y); : Zc*sink(gama*1) polovina = 1/Zc*(c	:osh(gama*l)-1)/sinh(gama*l)		
<pre>>> primer_2_2 Z =</pre>	+ 1.6880e+02i + 5.2400e-04i + 1.6409e+02i + 5.3186e-04i			
				৩৫৫
MT (NEEC)	ВНМС	Скопје, 2019	29/45

Пример 4

Пример 2.3 од книгата: Идеален вод со должина l = 800 km работи во празен од. Напонот на почетокот на водот се држи на константна вредност U_1 . Да се одреди распределбата на напонот и струјата долж водот.

$$\underline{I}_{2} = 0$$

$$\underline{U}_{1} = \underline{U}_{2} \cos \beta l$$

$$\underline{U}_{2} = \frac{\underline{U}_{1}}{\cos \beta l}$$

$$\underline{U} = \underline{U}_2 \cos \beta (l-x) = \frac{\underline{U}_1}{\cos \beta l} \cos \beta (l-x)$$
$$\underline{I} = j \frac{\underline{U}_2}{\sqrt{3}Z_c} \sin \beta (l-x) = j \frac{\underline{U}_1}{\sqrt{3}Z_c \cos \beta l} \sin \beta (l-x)$$

Задача 1

Задача 2.3 од книгата: Да се пресмета вредноста на напонот на крајот од вод чија должина изнесува $l=800\,{
m km}$ и чија карактеристична импеданса изнесува $Z_c=370\,{
m \Omega}$. Пресметките да се извршат:

а) со занемарување на активната отпорност на водот;

б) со нејзиното уважување, ако е $r = 0,06 \,\Omega/{\rm km}.$

a)

$$Z_c = \sqrt{\frac{x}{b}} \quad \beta = \sqrt{xb}$$

$$x = \beta Z_c = \frac{0,06 \cdot \pi}{180} \cdot 370 = 0,388 \,\Omega/\mathrm{km}$$
$$b = \frac{x}{Z_c^2} = \frac{0,388}{370^2} = 2,83 \,\mu\mathrm{S/km}$$

BHMC

・・・・< 合・・・ き・・・ き・ き の へ (*)
 Скопје, 2019 32 / 45

・ロト ・四ト ・日・ ・日・ 三

Скопје, 2019

33/45

Задача 1

MT (NEEC)

MT (NEEC)

a)

$$k = \frac{U_2}{U_1} = \frac{1}{\cos\beta l} = \frac{1}{\cos 800 \cdot 0,06^\circ} = 1,495$$

б)

$$\underline{\gamma} = \sqrt{\frac{r+jx}{jb}} = \sqrt{\frac{0,06+j0,388}{j2,83\cdot10^{-6}}} = (0,081+j1,05)\cdot10^{-3}$$
$$\underline{k} = \frac{\underline{U}_2}{\underline{U}_1} = \frac{1}{\cosh\underline{\gamma}l} = \frac{1}{[\cosh(0,081+j1,05)\cdot10^{-3}\cdot800]} = 1,4878-j0,1072$$
$$k = \sqrt{1,4878^2+0,1072^2} = 1,492$$

Задача 2

Задача 2.6 од книгата: Вод со позната должина l напојува потрошувач со чисто активно оптоварување $P_2 = k \cdot P_N$. Да се определи зависноста на напонот U_2 од степенот на оптовареноста на водот k, ако напонот на почетокот од водот U_1 се одржува на константна вредност. Во пресметките водот да се третира како идеален.

$$\underline{U}_1 = \underline{U}_2(\cos\beta l + jk \cdot \sin\beta l)$$

$$U_2 = \frac{U_1}{\sqrt{\cos^2\beta l + k^2 \sin^2\beta l}}$$

$k = \frac{P_2}{P_N}$	$\frac{U_2/U_1}{l=300 \text{ km}}$	$\frac{U_2/U_1}{l=500 \text{ km}}$
0,00	1,052	1,155
0,25	1,048	1,143
0,50	1,038	1,110
0,75	1,022	1,033
1,00	1,000	1,000
1,50	0,945	0,873
2,00	0,882	0,756

BHMC

Задача 2

Задача З

Задача 2.8 од книгата: Даден е идеален вод долг $l=250~{\rm km}$, со карактеристична импеданција $Z_c=350~\Omega.$ Напонот на почетокот на водот изнесува $U_1=380~{\rm kV}$ и се држи на константна вредност, независно од неговиот режим на работа.

- а) Да се одреди напонот на крајот од водот и струјата на почетокот од водот во случајот кога водот работи во режимот на празен од. Колкава ќе биде реактивната моќност што водот ја произведува во тој случај?
- б) Колкава треба да биде реактанцијата на реакторот X_p , приклучена на крајот од водот, за да биде струјата на почетокот од водот еднаква на нула. Колкав е напонот <u> U_2 </u> и моќноста <u> S_2 </u> во овој случај?
- в) Да се одреди законот на измена на напонот долж водот U(x) за разни вредности на реактансата X_p . Колкава треба да биде реактанцијата X_p за да бидат напоните U_1 и U_2 еднакви меѓу себе?

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0</p>

Скопје, 2019 37/45

Задача За

$$\begin{split} \beta l &= 0,06^{\circ} \cdot 250 = 15^{\circ} \\ & \underbrace{U_{1}}{} = \underbrace{U_{2} \cos \beta l}{} \\ & \underbrace{U_{2}}{} = \frac{U_{1}}{\cos \beta l} = \frac{380}{\cos 15^{\circ}} = 393,4 \, \mathrm{kV} \\ & I_{1} = j \frac{U_{2}}{\sqrt{3}Z_{c}} \sin \beta l = j \frac{U_{1}}{\sqrt{3}Z_{c}} \, \mathrm{tg} \, \beta l \\ & \underbrace{S_{1}}{} = \sqrt{3} \underbrace{U_{1}}{} I_{1}^{*} = \sqrt{3} \underbrace{U_{1}}{} \left(j \frac{U_{1}}{\sqrt{3}Z_{c}} \, \mathrm{tg} \, \beta l \right)^{*} = -j \frac{U_{1}^{2}}{Z_{c}} \, \mathrm{tg} \, \beta l = \\ & = -j \frac{380^{2}}{\sqrt{3} \cdot 350} \, \mathrm{tg} \, 15^{\circ} = -j110,55 \, \mathrm{MVA} \end{split}$$

Задача Зв

$$\underline{U}_{1} = \underline{U}_{2} \cos \beta l + j\sqrt{3}Z_{c} \frac{\underline{U}_{2}}{\sqrt{3} \cdot jX_{p}} \sin \beta l$$
$$\underline{U}_{1} = \underline{U}_{2} \left(\cos \beta l + \frac{Z_{c}}{X_{p}} \sin \beta l \right)$$
$$\cos \beta l + \frac{Z_{c}}{X_{p}} \sin \beta l = 1$$
$$X_{p} = \frac{Z_{c} \sin \beta l}{1 - \cos \beta l} = \frac{350 \cdot \sin 15^{\circ}}{1 - \cos 15^{\circ}} = 2658, 51 \,\Omega$$

Скопје, 2019 42 / 45

Скопје, 2019 41/45

Скопје, 2019 40 / 45

Задача 4

MT (NEEC)

Задача 2.11 од книгата: Идеален вод со должина $l=1000~{\rm km}$ и со карактеристична импеданција $Z_c=300~\Omega$ работи во режим на празен од. Напонот на почетокот од водот се држи на константна вредност $U_A=500~{\rm kV}={\rm const.}$ За да се намали реактивната моќност што водот ја генерира во режимот на празен од и за да се ограничат вредностите на напонот долж водот, се предвидува на средината од водот (x=l/2) да се приклучи реактор, чија реактанција ќе изнесува $X_p=450~\Omega.$ Да се одредат напоните U_B и U_C во средината и на крајот од водот

- а) пред приклучувањето на реакторот,
- б) по приклучувањето на реакторот.

Колкави се реактивните моќности на почетокот од водот во овие два случаи?

BHMC

Задача 4а

MT (NEEC)

MT (NEEC)

 $\beta l = 0,06^{\circ} \cdot 1000 = 60^{\circ}$ $A = l/2 \qquad B \qquad l/2 \qquad C$ $U_A = U_C \cos \beta l$

$$U_C = \frac{U_A}{\cos\beta l} = \frac{500}{\cos 60^\circ} = 1000 \,\text{kV}$$
$$U_B = U_C \cos\frac{\beta l}{2} = 1000 \cos 30^\circ = 866,03 \,\text{kV}$$

BHMC

- промена на оптоварувањето на системот: во големи ЕЕС односот меѓу максималната и минималната моќност во текот на денот е од 1,5:1 до 2:1, во дистрибутивните мрежи односот може да биде и поголем од 6:1.
- измени на режимот на работа на изворите на електрична енергија
- измени во поврзаноста на мрежата

За да се одржува отстапувањето на напонот кај потрошувачите од неговата номинална вредност во определени граници, потребно е да се врши регулација на напонот во разни точки од мрежата.

Врска меѓу Q и U

$$\Delta U = |\underline{U}_1| - |\underline{U}_2| \approx \Delta U_d = \frac{P_2 \cdot R + Q_2 \cdot X}{U_2}$$

За елементите во високонапонските мрежи важи $X/R \gg 1$, т.е. $Q_2 \cdot X \gg P_2 \cdot R$

Главна причина за варијацијата на напонот во високонапонските мрежи се реактивните моќности.

За регулација на напоните дополнителни реактивни моќности се добиваат од кондензаторска батерија, синхрон компензатор или реактор.

Пример 1

MT (NEEC)

Разгледуваме режим на работа на еден 110 kV вод со $R=6,424\,\Omega$, $X=19,552\,\Omega$, $B=145\,\mu{\rm S}$, $l=50\,{\rm km}$, како на сликата. Водот напојува потрошувач со моќност $\underline{S}_2=(40+j15)\,{\rm MVA}$ при напон $U_2=110\,{\rm kV}$. Напонот во напојната точка е притоа $U_1=115\,{\rm kV}$ и соодветно на тоа, загубата на напон во преносниот во изнесува $\Delta\,U=115-110=5\,{\rm kV}$.

Доколку моќноста на потрошувачот се зголеми за 50% напонот на крајот од водот ќе падне на вредноста $U_2=107,034\,{\rm kV}.$

< □ ▶ < @ ▶ < E ▶ < E ▶ E のへで Ckonie, 2019 5/71

Скопје, 2019 4 / 71

Пример 1

MT (NEEC)

Ако сакаме напонот да остане и понатаму ист и да ја задржи старата вредност $U_2 = 110 \,\mathrm{kV}$, тогаш ќе мора да се инјектира дополнителна реактивна моќност во јазелот 2 со вредност од $15,9 \,\mathrm{Mvar}$.

Регулација на напонот со измена на напоните

кај изворите

Во помалите мрежи (микро мрежи) кои се напојуваат од само една електрична централа регулацијата на напонот најчесто се врши со измена на напонот кај самите синхрони генератори.

MT (NEEC)

Скопје, 2019 12/71

Регулација во безнапонска состојба

5. Пресметка на најповолна позиција на преклопката

$$\alpha_o = \left(\frac{k_o}{k_n} - 1\right) \cdot 100$$

 Заокружување позиција на преклопката на најблиската постоечка вредност

7. Пресметка на коефициентот на трансформација

$$k = \left(1 + \frac{\alpha}{100}\right) \cdot k_n$$

8. Проверка на напонските прилики на секундарот

$$U_{2(\max)} = rac{U'_{2(\max)}}{k}, \quad U_{2(\min)} = rac{U'_{2(\min)}}{k}$$

Скопје, 2019 13 / 71

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへの

Скопје, 2019 14/71

Пример 2

MT (NEEC)

Пример 3.1 од книгата: Потребно е да се избере регулациониот отцеп на VN намотка од трансформаторот за снижување на напонот 35/0,4 kV со моќност 630 kVA така што средната вредност на напонот на NN собирници да биде $U_{2o} = 0,39 \, {\rm kV}$, а отстапувањата на напонот во режимот на максимално и минимално оптоварување околу средната вредност да бидат приближно еднакви.

Во режимот на максимално оптоварување потрошувачите земаат моќност $P_{\rm max}=520~{\rm kW}$ и $Q_{\rm max}=390~{\rm kvar}$ и напонот на VN собирници изнесува $U_{1(\rm max)}=33,3~{\rm kV}.$

Во режимот на минимално оптоварување моќноста на потрошувачите изнесува $P_{\min}=220\,\mathrm{kW}$ и $Q_{\min}=180\,\mathrm{kvar}$, а напонот на VN собирници изнесува $U_{1(min)}=35,2\,\mathrm{kV}$.

Активната и реактивната отпорност на трансформаторот, сведени на VN страна, изнесуваат $R_T=23,5\,\Omega$ и $X_T=123,5\,\Omega.$

BHMC

Пример 2

$$\begin{split} U_{2(\max)}' &= U_{1(\max)} - \frac{P_{T(\max)} \cdot R_T + Q_{T(\max)} \cdot X_T}{U_n} = \\ &= 33, 3 - \frac{0, 52 \cdot 23, 5 + 0, 39 \cdot 123, 5}{35} = 31, 6 \, \mathrm{kV} \\ U_{2(\min)}' &= U_{1(\min)} - \frac{P_{T(\min)} \cdot R_T + Q_{T(\min)} \cdot X_T}{U_n} \\ &= 35, 2 - \frac{0, 22 \cdot 23, 5 + 0, 18 \cdot 123, 5}{35} = 34, 4 \, \mathrm{kV} \\ U_{2(sr)}' &= \frac{U_{2(\max)}' + U_{2(\min)}'}{2} = \frac{31, 6 + 34, 4}{2} = 33 \, \mathrm{kV} \\ k_o &= \frac{U_{2(sr)}'}{U_{2o}} = \frac{33}{0, 39} = 84, 7 \\ k_n &= \frac{35}{0, 4} = 87, 5 \\ \alpha_o &= \left(\frac{k_o}{k_n} - 1\right) \cdot 100 = \left(\frac{84, 7}{87, 5} - 1\right) \cdot 100 = -3, 2\% \end{split}$$

$$\alpha_{1o} = \left(\frac{k_{13o}}{k_{13n}} - 1\right) \cdot 100$$

- 5. Заокружување позиција на преклопката на најблиската постоечка вредност α_1
- 6. Пресметка на коефициентот на трансформација примар/терциер

$$k_{13} = \left(1 + \frac{\alpha_1}{100}\right) \cdot k_{13n}$$

- 7. Слично како и кај двонамотните трансформатори се пресметуваат вредностите на напоните на секундарот $\mathit{U}_{2(\max)}'$ и $\mathit{U}_{2(\min)}'$
- 8. Пресметка на средна вредност на напонот на секундарот

MT (DEEC)

$$U'_{2(sr)} = \frac{U'_{2(max)} + U'_{2(min)}}{2}$$

Скопје, 2019 18/71

Регулација кај тринамотни трансформатори

 Пресметка на потребниот коефициент на трансформација примар/секундар

$$k_{12o} = rac{U_{2(sr)}'}{U_{2o}}, \quad U_{2o}$$
 е посакуваната вредност на напонот

10. Пресметка на најповолна позиција на преклопката на секундарот Бидејќи и VN и SN намотки имаат регулациони отцепи, а преклопката на VN намотка е веќе поставена на положба α_1 ќе имаме

$$k_{12o} = \frac{1 + \alpha_1 / 100}{1 + \alpha_{2o} / 100} \cdot k_{12n}$$

од каде добиваме

MT (NEEC)

$$\alpha_{2o} = \left[\frac{k_{12n}}{k_{12o}} \cdot \left(1 + \frac{\alpha_1}{100}\right) - 1\right] \cdot 100$$

11. Заокружување позиција на преклопката на најблиската постоечка вредност α_2

Регулација кај тринамотни трансформатори

12. Пресметка на коефициентот на трансформација примар/секундар

$$k_{12} = \frac{1 + \alpha_1 / 100}{1 + \alpha_2 / 100} \cdot k_{12},$$

13. Проверка на напонските прилики на секундарот и терциерот

$$U_{2(\max)} = \frac{U'_{2(\max)}}{k_{12}}, \quad U_{2(\min)} = \frac{U'_{2(\min)}}{k_{12}}$$
$$U_{3(\max)} = \frac{U'_{3(\max)}}{k_{13}}, \quad U_{3(\min)} = \frac{U'_{3(\min)}}{k_{13}}$$

ロ ト < 伊 ト < 主 ト ミ の Q (ペ Скопје, 2019 20/71

Скопје, 2019 19 / 71

Пример 3

MT (NEEC)

MT (NEEC)

Пример 3.2 од книгата: Во една регионална трансформаторска станица за снижување на напонот инсталиран е тринамотен трансформатор 110/38,5/6,6 kV со моќност 10 MVA. Со електрична пресметка се одредени напоните на секундарната и терциерната страна, во режимот на максимално и минимално оптоварување, сведени на VN страна

$$\begin{array}{ll} U_{2(\max)}' = 93,3\,\mathrm{kV}, & U_{3(\max)}' = 96,4\,\mathrm{kV} \\ U_{2(\min)}' = 103,6\,\mathrm{kV}, & U_{3(\min)}' = 102,5\,\mathrm{kV} \end{array}$$

Намотката на VN страна има регулациона преклопка за регулација под товар со 18 регулациони отцепи ($\pm 9 \times 1,78\%$).

SN намотка 35 kV има преклопка за регулација во безнапонска состојба со 4 регулациони отцепи $(\pm 2\times 2,5\%).$

Потребно е да се одреди со кои регулациони отцепи на примарната и секундарната намотка ќе треба да работи трансформаторот за да постигнеме напоните на секундарната и терциерната страна да изнесуваат во режим на максимално оптоварување: $U_{20\,\mathrm{max}}=37\,\mathrm{kV}$ и $U_{30\,\mathrm{max}}=6,3\,\mathrm{kV}$ во режим на минимално оптоварување: $U_{20\,\mathrm{min}}=36\,\mathrm{kV}$ и $U_{30\,\mathrm{min}}=6\,\mathrm{kV}$

< (日) ・ (日) ・ (目) ・ (目) ・ (日) ・

Бидејќи трансформаторот може да ја промени положбата на преклопката на примарот во текот на денот под товар ќе одредиме два коефициенти на трансформација $k_{13(\max)}$ и $k_{13(\min)}$ со коишто трансформаторот треба да работи во режимот на максимално и минимално оптоварување.

$$\begin{aligned} k_{13o(\max)} &= \frac{U'_{3(\max)}}{U_{3o(\max)}} = \frac{96, 4}{6, 3} = 15, 3\\ k_{13o(\min)} &= \frac{U'_{3(\min)}}{U_{3o(\min)}} = \frac{102, 5}{6} = 17, 1\\ \alpha_{1o(\max)} &= \left(\frac{k_{13o(\max)}}{k_{13n}} - 1\right) \cdot 100 = \left(\frac{15, 3}{110/6, 6} - 1\right) \cdot 100 = -8, 2\%\\ \alpha_{1(\max)} &= -5 \cdot 1, 78 = -8, 9\%\\ \alpha_{1o(\min)} &= \left(\frac{k_{13o(\min)}}{k_{13n}} - 1\right) \cdot 100 = \left(\frac{17, 1}{110/6, 6} - 1\right) \cdot 100 = +2, 5\%\\ \alpha_{1(\min)} &= 1 \cdot 1, 78 = 1, 78\% \end{aligned}$$

・ロト・4回ト・4回ト・回・9900

Скопје, 2019 22 / 71

Пример 3

MT (NEEC)

Со усвоените позиции на регулационата преклопка за вистинските вредности на напонот на терциерот ќе добиеме

$$U_{3(\max)} = \frac{U'_{3(\max)}}{\left(1 + \frac{\alpha_{1(\max)}}{100}\right) \cdot k_{13n}} = \frac{96, 4}{\left(1 + \frac{-8, 9}{100}\right) \cdot \frac{110}{6, 6}} = 6, 33 \text{ kV}$$
$$U_{3(\min)} = \frac{U'_{3(\min)}}{\left(1 + \frac{\alpha_{1(\min)}}{100}\right) \cdot k_{13n}} = \frac{102, 5}{\left(1 + \frac{1, 78}{100}\right) \cdot \frac{110}{6, 6}} = 6, 02 \text{ kV}$$

Уште треба да ја одредиме положбата на регулационата преклопка од SN намотка така што ќе постигнеме напонот на секундарот собирници да варира во интервалот $36 \, {\rm kV} \le U_2 \le 37 \, {\rm kV}$. Бидејќи преклопката е со регулација во безнапонска состојба позицијата ќе остане иста и за режимот на максимално и за режимот на минимално оптоварување.

BHMC

・ロト < 部ト < 注ト < 注ト 注 の Q (*)</p>
Скопје, 2019 23/71

Скопје, 2019 24 / 71

Пример 3

MT (NEEC)

Ќе пробаме со
$$\alpha_2 = 0$$

$$k_{12(\max)} = \frac{1 + \alpha_{1(\max)}/100}{1 + \alpha_2/100} \cdot k_{12n} = \frac{1 - 8, 9/100}{1} \cdot \frac{110}{38, 5} = 2, 61$$

$$k_{12(\min)} = \frac{1 + \alpha_{1(\min)}/100}{1 + \alpha_2/100} \cdot k_{12n} = \frac{1 + 1, 78/100}{1} \cdot \frac{110}{38, 5} = 2, 91$$

$$U_{2(\max)} = \frac{U'_{2(\max)}}{k_{12(\max)}} = \frac{93, 3}{2, 61} = 35, 7 \text{ kV}$$

$$U_{2(\min)} = \frac{U'_{2(\min)}}{k_{12(\min)}} = \frac{103, 6}{2, 91} = 35, 8 \text{ kV}$$

$$U_{2(sr)} = \frac{U_{2(\max)} + U_{2(\min)}}{2} = \frac{35, 7 + 35, 8}{2} = 35, 75 \text{ kV}$$

Вредноста $U_{2(sr)}=35,75\,{\rm kV}$, добиена со $\alpha_2=0,$ е помала од бараната средна вредност

$$U_{2o(sr)} = \frac{37 + 36}{2} = 36,5\,\mathrm{kV}$$

за $0,75\,{\rm kV}$ односно за 2,05% затоа бираме најблиска вредност $\alpha_2=+2,5\%.$

$$\begin{aligned} k_{12(\max)} &= \frac{1 + \alpha_{1(\max)}/100}{1 + \alpha_{2}/100} \cdot k_{12n} = \frac{1 - 8, 9/100}{1 + 2, 5/100} \cdot \frac{110}{38, 5} = 2,54 \\ k_{12(\min)} &= \frac{1 + \alpha_{1(\min)}/100}{1 + \alpha_{2}/100} \cdot k_{12n} = \frac{1 + 1,78/100}{1 + 2,5/100} \cdot \frac{110}{38, 5} = 2,84 \\ U_{2(\max)} &= \frac{U'_{2(\max)}}{k_{12(\max)}} = \frac{93,3}{2,54} = 36,73 \,\mathrm{kV} \\ U_{2(\min)} &= \frac{U'_{2(\min)}}{k_{12(\min)}} = \frac{103,6}{2,84} = 36,48 \,\mathrm{kV} \\ U_{2(sr)} &= \frac{U_{2(\max)} + U_{2(\min)}}{2} = \frac{36,73 + 36,48}{2} = 36,6 \,\mathrm{kV} \end{aligned}$$

Скопје, 2019 25 / 71

□ > (個) (目) (目) (目) (0)

Скопіе, 2019 26 / 71

Пример 3

MT (NEEC)

На крајот ќе напоменеме дека во пресметките е претпоставено дека режимите на максимално и минимално оптоварување временски се совпаѓаат и за двете мрежи, 6 kV и 35 kV, што не мора секогаш да биде така. Дијаграмите на оптоварување на едната и другата мрежа понекогаш можат да бидат временски "изместени", а тоа во голема мерка зависи од карактерот на приклучените потрошувачи во секоја од нив.

Регулационите трансформатори претставуваат основно средство за регулација на напонот во ЕЕС. Многу често тие претставуваат и единствено економски оправдано средство за регулација на напоните не само во регионалните туку и во месните мрежи.

Регулација на напонот во дистрибутивни

мрежи

MT (TEEC

- Голем процент од водовите се кабелски (мала загуба на напон) или пак надземни со релативно мал пресек (големо *R*).
- Загубата на напон претежно се должи на течењето на активните, а не на реактивните моќности (висок фактор на моќност соз φ > 0,9).
 Компензацијата на реактивната моќност ќе има слаб ефект.
- Само регулационите трансформатори можат да ги задоволат барањата во поглед на напоните кај потрошувачите.

Централна регулација на напонот

- Еден регулационен трансформатор за напојувањето на цел регион, поставен во точка која во најголема мерка ја карактеризира напонската состојба во мрежата.
- Ако потрошувачите имаат различен карактер и дијаграми на оптоварување потребни се дополнителни инјекции на реактивна моќност во одредени точки од мрежата.
- Ако ни со дополнителни мерки не можат да се постигнат задоволителни резултати, тогаш се преминува на локална регулација на напонот кај одредени потрошувачи со поставување регулационен трансформатор.

Регулација на напоните со прераспределба на реактивните мокности во EEC

Со инјектирање на реактивна моќност во одделните јазли од системот

Со прераспределба на реактивните моќности на изворите на енергија

Пример 4

$$\begin{array}{c} G \\ \textcircled{O} \\ \textcircled{O} \\ \end{array} \begin{array}{c} T_1 \\ \textcircled{O} \\ \end{array} \begin{array}{c} T_2 \\ \textcircled{O} \\ \end{array} \begin{array}{c} T_2 \\ \textcircled{O} \\ \end{array} \begin{array}{c} T_p \\ T_p \end{array} \begin{array}{c} T_p \\ \end{array} \begin{array}{c} T_p \\ T_p \\ \end{array} \begin{array}{c} T_p \\ T_p \end{array} \begin{array}{c} T_p \\ T_p \\ T_p \end{array} \begin{array}{c} T_p \\ T_p \\ T_p \\ T_p \end{array}$$

Нека се познати параметрите на елементите од системот $S_{nT1} = S_{nT2} = 50$ MVA, $u_{k1} = u_{k2} = 10\%$, $P_p = 40$ MW и нека преносниот вод со номинален напон 110 kV и должина $l=60\,{\rm km}$ е изведен со спроводници ${
m Al/Fe}\,240/40\,{
m mm^2/mm^2}$. Во тој случај би добиле

$$\begin{split} R_e &= R_{T1} + R_V + R_{T2} = 0,75 + 7,5 + 0,75 = 9\,\Omega\\ X_e &= X_{T1} + X_V + X_{T2} = 290 + 24 + 24 + 24 = 362\,\Omega\\ Xe/R_e &= 362/9 = 40,2 \end{split}$$

 $\cos \varphi_p$ $(Q_p \cdot X_e)/(P_p \cdot R_e)$ 4760/360 = 13, 20,950,907013/360 = 19, 50,8010860/360 = 30, 0Со промена на Q во водот ќе можеме ефикасно да ја менуваме загубата на напон, односно да вршиме регулација на напон кај потрошувачот. MT (NEEC) Скопје, 2019

30/71

$$\Delta U = \frac{P_p \cdot R_e + (Q_p - Q_{SK}) \cdot X_e}{U_n}$$

Напонот кај потрошувачот ќе порасне од вредноста U_p на нова вредност U_p^\prime

$$U'_p = U_p + \frac{Q_{SK} \cdot X_e}{U_n}$$

Инјектирањето на реактивна моќност во принцип претставува средство за прераспределба на реактивните моќности во ЕЕС. Потрошувачот добива дел од реактивната моќност од SK наместо од генераторот G.

Регулацијата на напоните во мрежите со измена на тековите на реактивни моќности може да се оствари и со примена на кондензаторски батерии и реактори.

Два генератори

- Регулација на напоните во ЕЕС може да се оствари и со прераспределба на произведуваните реактивни моќности меѓу изворите во системот.
- Секој потрошувач може да прима реактивна моќност во помала или поголема мерка од еден или друг генератор со што тековите на моќности во водовите се менуваат, а со тоа и загубите на напон.

ロト・日本 モト・モト モー のく()

Скопіе, 2019 32 / 71

$U\!-\!Q$ карактеристика

$$\begin{array}{c} \bigcirc & \stackrel{1}{\bigcirc} & \stackrel{1}{\longrightarrow} & \stackrel{1}{\longrightarrow} & \stackrel{1}{\bigcirc} & \stackrel{1}{\longrightarrow} & \stackrel{1}{\longrightarrow} & \stackrel{1}{\longrightarrow} & \stackrel{1}{p_{p+j}}\mathcal{Q}_p \\ \\ U_p \approx U_G - & \frac{P_p \cdot R_e + Q_p \cdot X_e}{U_n} \approx U_G - & \frac{Q_p \cdot X_e}{U_n} \end{array}$$

BHMC

Во реалните ЕЕС U - Q карактеристиките не се линеарни функции. Напонот во некој јазел од системот зависи и од активната и од реактивната моќност во тој јазел, т.е. $U = \Phi(P, Q)$.

Ако во некој јазел активната моќност се измени за износ dP, а реактивната моќност се измени за износ dQ, тогаш напонот U во истиот тој јазел ќе се измени за некоја вредност

U – *Q* карактеристика

За вод со параметри R и X, оптоварен на крајот со моќност $\underline{S}=P+jQ$ и со познат напон на почетокот U_1 имаме (приближно)

 $D D \downarrow O V$

$$U = U_{1} - \frac{P \cdot R + Q \cdot X}{U}$$

$$P \cdot R + Q \cdot X = U \cdot (U_{1} - U)$$

$$\frac{\partial}{\partial P} (P \cdot R + Q \cdot X) = \frac{\partial}{\partial P} [U \cdot (U_{1} - U)]$$

$$R = \frac{\partial U}{\partial P} \cdot (U_{1} - U) + U \cdot (0 - \frac{\partial U}{\partial P}) = \frac{\partial U}{\partial P} \cdot (U_{1} - 2U)$$

$$\frac{\partial U}{\partial P} = \frac{R}{U_{1} - 2U}$$

$$\frac{\partial P}{\partial U} = \frac{U_{1} - 2U}{R} \qquad \frac{\partial P}{\partial U} < 0$$

$$\frac{\partial Q}{\partial U} = \frac{U_{1} - 2U}{X} = -K_{U} \quad \frac{\partial Q}{\partial U} < 0$$

・ロト・日本・日本・日本・日本

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへの

Скопје, 2019 35 / 71

Скопје, 2019 34 / 71

Коефициент K_U

MT (NEEC)

MT (NEEC)

- Коефициентот K_U = −∂Q/∂U во ЕЕС има многу поголемо значење отколку големината ∂P/∂U.
- К_U можеме да го добиеме со пресметки или со мерење во самата мрежа со инјектирање на реактивна моќност ΔQ и мерење на промената на напонот ΔU.

$$K_U = \frac{\Delta Q}{\Delta U}$$

- К_U зависи од реактанцијата на водот, а во сложен систем од еквивалентната (влезната) реактанција на посматраниот јазел. За јазел со мала реактанција коефициентот е голем и обратно.
- Во јазел со мала реактанција напонот е помалку зависен од оптоварувањето и обратно. Во таков јазел напонот помалку паѓа, но и потешко се регулира.

BHMC

Коефициент K_U и струја на трифазна куса врска

Случај на празен од на системот во кој напоните на сите јазли се $U = U_n$

$$I_{K3} = \frac{U_n}{\sqrt{3}X_e} \quad S_{K3} = \sqrt{3} U_n I_{K3} = \frac{U_n^2}{X_e}$$
$$K_U = \frac{2U - U_1}{X_e} = \frac{2U_n - U_n}{X_e} = \frac{U_n}{X_e}$$
$$\boxed{K_U = \frac{S_{K3}}{U_n} = \sqrt{3}I_{K3}}$$

Ако струјата на трифазна куса врска во некој јазел од мрежата изнесува $I_{K3} = 5 \,\mathrm{kA}$, тогаш ќе имаме $K_U = \sqrt{3} \cdot 5 = 8,66 \,\mathrm{Mvar/kV}$. Тоа би значело дека доколку реактивното оптоварување во јазелот се зголеми за $8,66 \,\mathrm{Mvar}$, тогаш напонот во јазелот ќе падне за $1 \,\mathrm{kV}$ и обратно. Ако сакаме напонот во јазелот да го покачиме за $5 \,\mathrm{kV}$, ќе биде потребно во него да инјектираме реактивна моќност $Q = 5 \cdot 8,66 = 43,3 \,\mathrm{Mvar}$.

MT (NEEC)	BHMC		Скопје, 20	19	36/71
	4	★豊	<≡>	÷.	৩৫৫

Во една TC 110/10 kV/kV се инсталирани два идентични, паралелно врзани, трансформатора, од коишто едниот служи како резерва и е нормално исклучен од погонот. Во посматраниот режим, значи, работи само еден трансформатор и притоа тој е оптоварен со моќност $\underline{S}_2 = (52 + j18) \, \mathrm{MVA}$ при напон $U_2 = 10, 2 \, \mathrm{kV}$. Позната е моќноста на трифазна куса врска за собирниците 1: $S_{k3} = 2500 \, \mathrm{MVA}$.

- а) Да се пресметаат коефициентите k_{U1} и k_{U2} за високонапонската (примарната) собирница 1 и среднонапонската (секундарната) собирница
 2 и да се определат U-Q карактеристиките за обете собирници.
- б) Да се процени колкави ќе бидат новите вредности на напоните U₁ и U₂ ако дојде до испад на еден од изводите што се напојуваат од собирниците 2 со што сумарната моќност на оптоварување на трансформаторот се намали на вредноста <u>S</u>₂ = (32 + *j*10) MVA.
- в) Колкави ќе бидат коефициентите k_{U1} и k_{U2} ако се вклучи и вториот трансформатор.

Пример 5а

$$k_{U1} = \frac{U_{1n}}{X_{EES}} = \frac{110}{4,84} = 22,727 \text{ kA}$$
$$k_{U2} = \frac{U_{2n}}{X_{2ek}} = \frac{10,5}{0,2531} = 41,4915 \text{ kA}$$

U – *Q* карактеристика за јазелот 1

$$U - U_1 = -1/k_{U1} \cdot (Q - Q_1)$$
$$U - 111,892 = -1/22,727 \cdot (Q - 24,239)$$
$$U = -0,044Q + 112,959$$

 $U\!-\,Q$ карактеристика за јазелот 2

$$U - U_2 = -1/k_{U2} \cdot (Q - Q_2)$$
$$U - 10, 2 = -1/41, 4915 \cdot (Q - 18)$$
$$U = -0,0241Q + 10,634$$

 ・ < 部 ト < き ト く き ト き の Q (*)
 Ckonje, 2019 40/71
 40/71

Пример 5б

MT (NEEC)

Моќноста на потрошувачот е намалена за $20\,{\rm MW}$ и $8\,{\rm Mvar}$ Q_1 приближно ќе се намали исто за $8\,{\rm Mvar}$ и ќе биде $Q_1=24,239-8=12,239\,{\rm Mvar}$ (точната вредност е $Q_1=12,415\,{\rm Mvar}$). Намалувањето на реактивното оптоварување на потрошувачот може да се третира како позитивна инјекција на реактивна моќност од $8\,{\rm Mvar}$

$$\Delta U_1 = \frac{\Delta Q_1}{k_{U1}} = \frac{8}{22,727} = 0,352 \,\text{kV}$$
$$\Delta U_2 = \frac{\Delta Q_2}{k_{U2}} = \frac{8}{41,4915} = 0,193 \,\text{kV}$$
$$U_1 = 111,892 + 0,352 = 112,244 \,\text{kV}$$
$$U_2 = 10,2 + 0,193 = 10,393 \,\text{kV}$$

・ ・ ・ 合 ト ・ 主 ト ミ ・ シ へ つ
 ・ ・ てколје, 2019 41/71

Скопје, 2019 42 / 71

Пример 5в

MT (NEEC)

MT (NEEC)

$$\begin{split} X_{EES} &= \frac{U_n^2}{S_{k3}} = \frac{110^2}{2500} = 4,84\,\Omega \quad X_{EES}'' = \frac{4,84}{10,4762} = 0,0441\,\Omega \\ X_{2ek}' &= X_{EES} + X_T/2 = 4,84 + 11,467 = 16,307\,\Omega \\ X_{2ek} &= \frac{X_{2ek}'}{k_n^2} = \frac{16,307}{10,4762^2} = 0,1486\,\Omega \end{split}$$

BHMC

$$k_{U1} = rac{U_{1n}}{X_{EES}} = rac{110}{4,84} = 22,727 \,\mathrm{kA}$$
 (без промени) $k_{U2} = rac{U_{2n}}{X_{2ek}} = rac{10,5}{0,1486} = 70,668 \,\mathrm{kA}$

Бидејќи со вклучувањето на вториот трансформатор во погонот вредноста на k_{U2} се зголеми, варијациите на напонот кај собирниците 2 поради промените на товарот сега ќе бидат помали.

Скопје, 2019 48 / 71

BHMC

Пример 8
>> primer_mat_z_2 Y = 0.3458 -0.0625 -0.0833 0 -0.0625 0.1125 -0.0500 0
$\begin{array}{cccccc} -0.0833 & -0.0500 & 0.1958 & -0.0625 \\ 0 & 0 & -0.0625 & 0.0625 \\ Y = & & \\ & $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
(4,4) 0.0023 Z4 = 5.0000 9.0000 14.0000 30.0000
Z24 = 5.0000 5.0000 15.6667 9.0000 9.0000 14.0000 9.0000 30.0000
 (ロト・(計ト・(主)ト・主)・シーンの(の) MT (ПЕЕС) BHMC Ckonie, 2019 52 / 71
Пример 9
Да се одреди матрицата ${f Z}$ за мрежата од сликата ако е познато дека напонот на јазелот 2 е константен, а за водовите е познато $x=0,35\Omega/{ m km}.$
$ \begin{array}{c} 1 & T & 2 & v_1 & 3 & v_2 & 4 \\ \downarrow & \downarrow & \downarrow & 2 & km & \downarrow & 2 & 0,7 & \Omega & 3 & 1,4 & \Omega & 4 \\ U_1 = 108 & kV & \underline{S}_2 & \underline{S}_3 & \underline{S}_4 & S$
Начин 1:
$\begin{array}{c} 2 & 0.7 \ \Omega & 3 & 1.4 \ \Omega & 4 \\ & &$
$\begin{array}{c} 2 & 0.7 \ \Omega & 3 & 1.4 \ \Omega & 4 \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \qquad \qquad$
$ I_4 = 1 \text{ A} \qquad X_{34} = \frac{U_3}{I_4} = \frac{0,7}{1} = 0,7\Omega $
Пример 9 Начин 2:
$X_{34, \text{ BJ.}}$ $X_{33} = 0, 7\Omega$ $X_{44} = 0, 7 + 1, 4 = 2, 1\Omega$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$X_{34} = X_{43} = \frac{33 + 44}{2}$ $X_{44} = \frac{0,7+2,1-1,4}{2} = 0,7\Omega$
 (ロト・(部・く主)・(主)・ 注 の(で) MT (IFFC) BHMC Cuonia 2019 54/74

Начин 3:

$$\begin{split} \mathbf{Y} &= \begin{bmatrix} \frac{1}{0,7} + \frac{1}{1,4} & -\frac{1}{1,4} \\ -\frac{1}{1,4} & \frac{1}{1,4} \end{bmatrix} = \begin{bmatrix} 2,143 & -0,714 \\ -0,714 & 0,714 \end{bmatrix} \mathbf{S} \\ D &= 2,143 \cdot 0,714 - 0,714 \cdot 0,714 = 1,02 \\ \mathbf{Z} &= \mathbf{Y}^{-1} = \frac{1}{1,02} \cdot \begin{bmatrix} 0,714 & 0,714 \\ 0,714 & 2,143 \end{bmatrix} = \begin{bmatrix} 0,7 & 0,7 \\ 0,7 & 2,1 \end{bmatrix} \Omega \end{split}$$

Пример 10

MT (NEEC)

MT (NEEC)

Да се одреди матрицата \underline{Z} за јазлите 1 и 2 за мрежата од сликата ако е познато дека напонот на јазелот A е константен, за водовите е познато $x=0,4\,\Omega/{
m km}$, а трансформаторите имаат реактанции $X_T=10,669\,\Omega.$

Скопје, 2019 55 / 71

$$\begin{split} & \begin{bmatrix} X_{\rm T} \\ 10,669 \ \Omega \\ & \downarrow \\ U_1 = X_{\rm V1} \cdot I_2 \\ U_1 = 2 \ {\rm V} \\ \end{bmatrix} \begin{bmatrix} X_{\rm T} \\ 10,669 \ \Omega \\ & U_2 = (X_{\rm V1} + X_{\rm V2} + X_{\rm T}) \cdot I_2 \\ & U_2 = 16,669 \ {\rm V} \\ & I_2 = 1 \ {\rm A} \\ \end{bmatrix} \\ X_{22} = \frac{U_2}{I_2} = \frac{16,669}{1} = 16,669 \ \Omega \ {\rm M} \ X_{12} = \frac{U_1}{I_2} = \frac{2}{1} = 2 \ \Omega \ . \end{split}$$

BHMC

постигнеме $U_{2o(\max)} = 10,5\,\mathrm{kV}$ и $U_{2o(\min)} = 10,0\,\mathrm{kV}$. MT (NEEC)

BHMC

Скопје, 2019 60 / 71

$$\begin{aligned} R_e &= R_V + R_T/2 = 7,35\,\Omega\\ X_e &= X_V + X_T/2 = 35,36\,\Omega\\ U_{2(\max)}' &= U_{A(\max)} - \frac{P_{\max}R_e + Q_{\max}X_e}{U_n} = 100,9\,\mathrm{kV}\\ U_{2(\min)}' &= U_{A(\min)} - \frac{P_{\min}R_e + Q_{\min}X_e}{U_n} = 107,64\,\mathrm{kV} \end{aligned}$$

Кондензаторите можат само да покачат напонот, затоа во режим на минимално оптоварување ќе биде потребно да се исклучени. Коефициентот на трансформација k на ќе го избереме така што напонот $U_{2(\min)}$ ќе ја добие бараната вредност $U_{2o(\min)} = 10,0$ kV.

$$k_o = \frac{U'_{2(\min)}}{U_{2o(\min)}} = \frac{107, 64}{10} = 10,764$$

$$\alpha_o = \left(\frac{k_o}{k_n} - 1\right) \cdot 100 = \left(\frac{10,764}{110/11} - 1\right) \cdot 100 = 7,64\% \Rightarrow \alpha = 3 \times 2,5\% = 7,5\%$$

$$k = k_n \cdot (1 + \alpha/100) = 10 \cdot (1 + 7,5/100) = 10,75$$

Скопје, 2019 61/71

Скопје, 2019 63 / 71

Пример 11

MT (NEEC)

$$U_{2(\min)} = \frac{U'_{2(\min)}}{k} = \frac{107, 64}{10, 75} = 10,01 \,\text{kV}$$
$$U_{2(\max)} = \frac{U'_{2(\max)}}{k} = \frac{100, 9}{10, 75} = 9,39 \,\text{kV}$$

За да постигнеме $U_{2(\max)} = U_{2o(\max)} = 10,5\,{\rm kV}$ треба да инјектираме реактивна моќност ΔQ , со што ќе се добие покачување на напонот за $\Delta U = 10,5-9,39 = 1,11\,{\rm kV}.$

$$X''_{e} = \frac{X_{e}}{k^{2}} = \frac{35, 36}{10, 75^{2}} = 0,2923 \,\Omega$$
$$\Delta Q = \frac{\Delta U \cdot U_{2o(\text{max})}}{X''_{e}} = \frac{1,11 \cdot 10,5}{0,2923} = 39,9 \,\text{Mvar}$$

Номиналната моќноста на батеријата Q_{KB} се дава за номинален $U_n = 10 \, {\rm kV}$

$$\Delta Q = Q_{KB} \cdot \left(\frac{U_{2o}}{U_n}\right)^2 \Rightarrow Q_{KB} = \Delta Q \cdot \left(\frac{U_n}{U_{2o}}\right)^2 = 39, 9 \cdot \left(\frac{10}{10,5}\right)^2 = 36, 2 \text{ Mvar}$$

$$(\text{TEEC)} \qquad \text{BHMC} \qquad (\text{Ckonje, 2019} \quad 62/71)$$

Пример 12

MT (NEEC)

Пример 3.5 од книгата: Дадена е 35 kV надземна мрежа која напојува два потрошувача. Во режимот на максимално оптоварување потрошувачите земаат од мрежата моќности $\underline{S}_{1 \max} = (7, 5 + j3, 63) \text{ MVA }$ и $\underline{S}_{2 \max} = (5 + j3, 75) \text{ MVA}$, додека во режимот на минимално оптоварување нивните моќности за 3 пати помали. Водовите имаат исти параметри $R_V = 3, 15 \Omega$ и $X_V = 3, 5 \Omega$, а за трансформаторите се познати следните податоци $38, 5 \pm 2 \times 2, 5\%/11, \text{ kV/kV}, R_{T1} = 1, 364 \Omega, X_{T1} = 11 \Omega, R_{T2} = 1, 976 \Omega$ и $X_{T2} = 14, 69 \Omega$ (сведени на 35 kV). Напонот во напојната точка A се држи на константна вредност $U_A = 36, 75 \text{ kV}.$

Потребно е да се одредат коефициентите на трансформација на двата трансформатора така што средната вредност на напоните кај потрошувачите да изнесува $U_{1o} = U_{2o} = U_n = 10 \,\mathrm{kV}.$

$$\begin{split} \Delta U_{AB(\max)} &= \frac{\left[P_{1(\max)} + P_{2(\max)}\right] \cdot R_V + \left[Q_{1(\max)} + Q_{2(\max)}\right] \cdot X_V}{U_n} = 1,863 \,\mathrm{kW} \\ \Delta U_{BC(\max)} &= \frac{P_{2(\max)} \cdot R_V + Q_{2(\max)} \cdot X_V}{U_n} = 0,825 \,\mathrm{kV} \\ \Delta U_{T1(\max)} &= \frac{P_{1(\max)} \cdot R_{T1} + Q_{1(\max)} \cdot X_{T1}}{U_n} = 1,434 \,\mathrm{kV} \\ \Delta U_{T2(\max)} &= \frac{P_{2(\max)} \cdot R_{T2} + Q_{2(\max)} \cdot X_{T2}}{U_n} = 1,856 \,\mathrm{kV} \end{split}$$

Во режимот на минимално оптоварување овие загуби на напон ќе бидат приближно 3 пати помали (3 пати помали моќности).

$$\begin{array}{l} U_{B(\max)} = 34,887\,\mathrm{kV} & U_{C(\max)} = 34,062\,\mathrm{kV} \\ U_{1(\max)}' = 33,454\,\mathrm{kV} & U_{2(\max)}' = 32,206\,\mathrm{kV} \\ U_{B(\min)} = 36,129\,\mathrm{kV} & U_{C(\min)} = 35,854\,\mathrm{kV} \\ U_{1(\min)}' = 35,651\,\mathrm{kV} & U_{2(\min)}' = 35,235\,\mathrm{kV} \end{array}$$

Скопје, 2019 64 / 71

Пример 12

MT (NEEC)

$$U'_{1(sr)} = \frac{U'_{1(max)} + U'_{1(min)}}{2} = 34,55 \text{ kV}$$

$$U'_{2(sr)} = \frac{U'_{2(max)} + U'_{2(min)}}{2} = 33,72 \text{ kV}$$

$$k_{T1o} = \frac{U'_{1(sr)}}{U_{1o}} = \frac{34,55}{10} = 3,455$$

$$k_{T2o} = \frac{U'_{2(sr)}}{U_{2o}} = \frac{33,72}{10} = 3,372$$

$$\alpha_{1o} = \left(\frac{k_{T1o}}{k_{T1n}} - 1\right) \cdot 100 = -1,28\% \Rightarrow \alpha_{1} = -2,5\%$$

$$\alpha_{2o} = \left(\frac{k_{T2o}}{k_{T2n}} - 1\right) \cdot 100 = -3,66\% \Rightarrow \alpha_{2} = -2,5\%$$
where $\alpha_{2o} = 10,447 \text{ kV}$ $U_{1(max)} = 9,803 \text{ kV}$ $U_{1(max)} = 10,125 \text{ kV}$

Пример 13

Пример 3.6 од книгата: Да се одреди матрицата на реактанции на краткоспојната мрежа за системот прикажан на сликата. Параметрите на поедините елементи од мрежата се дадени на сликата. Сите водови имаат ист пресек и иста реактанција по единица должина $x=0,4~\Omega/{
m km}$.

$$\begin{split} X_{11} &= X_{T1} + X_1 || (X_2 + X_3 + X_4) = 66, \, 8\Omega \\ X_{22} &= X_{T2} + X_2 || (X_1 + X_3 + X_4) = 62, 8\,\Omega \\ X_{33} &= X_{T3} + (X_1 + X_3) || (X_2 + X_4) = 119, 8\,\Omega \\ X_{12,\text{BJ.}} &= X_{T1} + (X_1 + X_2) || (X_3 + X_4) + X_{T2} = 120\,\Omega \\ X_{13,\text{BJ.}} &= X_{T1} + X_3 || (X_1 + X_2 + X_4) + X_{T3} = 165\,\Omega \\ X_{23,\text{BJ.}} &= X_{T2} + X_4 || (X_1 + X_2 + X_3) + X_{T3} = 165\,\Omega \\ X_{12} &= X_{21} = \frac{X_{11} + X_{22} - X_{12,\text{BJ.}}}{2} = 4, 8\Omega \\ X_{13} &= X_{31} = \frac{X_{11} + X_{33} - X_{13,\text{BJ.}}}{2} = 10, 8\Omega \\ X_{23} &= X_{32} = \frac{X_{22} + X_{33} - X_{23,\text{BJ.}}}{2} = 8, 8\Omega \end{split}$$

イロト < 部 ト < 注 ト く 注 ト う え の へ の Скопје, 2019 67 / 71

(ロト < 団 ト < 三 ト < 三 ト) 三 の Q ()</p>

Скопје, 2019 68 / 71

Пример 14

MT (NEEC)

$\underline{\mathbf{Z}} = j\mathbf{X} = j$	$\begin{bmatrix} X_{11} \\ X_{21} \\ X_{31} \end{bmatrix}$	$X_{12} \\ X_{22} \\ X_{32}$	$\begin{bmatrix} X_{13} \\ X_{23} \\ X_{33} \end{bmatrix}$	$= j \left[\right]$	$ \begin{array}{c} 66,8\\ 4,8\\ 10,8 \end{array} $	$4,8 \\ 62,8 \\ 8,8$	10,8 8,8 119,8	Ω
--	--	------------------------------	--	----------------------	--	----------------------	----------------------	---

Пример 15

MT (NEEC)

Пример 3.7 од книгата: Се разгледува мрежата од примерот 3.5. Во режимот на максимално оптоварување напоните кај потрошувачите изнесуваат $U_{1(\max)} = 9,803 \, {\rm kV}$ и $U_{2(\max)} = 9,438 \, {\rm kV}$. Со цел да се поправат напонските прилики во овој режим на работа, се предвидува инсталирање на кондензаторски батерии кај обата потрошувача. Потребно е да се одредат вредностите ΔQ_1 и ΔQ_2 на реактивните моќности што ќе треба да се инјектираат на собирниците 1 и 2 така што нивните напони во режимот на максимално оптоварување да се покачат на вредноста $U_{1o(\max)} = U_{2o(\max)} = 10 \, {\rm kV}.$

BHMC

$$\begin{aligned} X_{11} &= X_1 + X_{T1} = 14, 5 \,\Omega \\ X_{22} &= X_1 + X_2 + X_{T2} + X_2 = 21,69\Omega \\ X_{12} &= X_{21} = \frac{X_{11} + X_{22} - X_{12,\text{BT.}}}{2} = 3,5\Omega \\ \mathbf{X} &= \begin{bmatrix} 14,5 & 3,5 \\ 3,5 & 21,69 \end{bmatrix} \Omega \\ \Delta U_1 &= X_{11} \cdot \frac{\Delta Q_1}{U_1} + X_{12} \cdot \frac{\Delta Q_2}{U_2} \\ \Delta U_2 &= X_{21} \cdot \frac{\Delta Q_1}{U_1} + X_{22} \cdot \frac{\Delta Q_2}{U_2} \end{aligned}$$

Бидејќи реактанциите, се сведени на $35\,kV$ страна, ќе биде потребно и напоните, како и прирастите на напоните, да ги сведеме на $35\,kV$ страна.

Пример 15

MT (NEEC)

MT (NEEC)

$$\begin{split} \Delta U_1 &= k_{T1} \cdot \left[U_{1o(\max)} - U_{1(\max)} \right] = 3,4125 \cdot (10 - 9,803) = 0,67\,\mathrm{kV} \\ \Delta U_2 &= k_{T2} \cdot \left[U_{2o(\max)} - U_{2(\max)} \right] = 3,4125 \cdot (10 - 9,438) = 1,92\,\mathrm{kV} \end{split}$$

BHMC

$$0,67 = 14,5 \cdot \frac{\Delta Q_1}{34,135} + 3,5 \cdot \frac{\Delta Q_2}{34,135}$$
$$1,92 = 3,5 \cdot \frac{\Delta Q_1}{34,135} + 21,69 \cdot \frac{\Delta Q_2}{34,135}$$

$$\Delta Q_1 = 0,9 \,\mathrm{Mvar}$$

 $\Delta Q_2 = 2,9 \,\mathrm{Mvar}$

BHMC

- ロ > - 4 酉 > - 4 豆 > - 4 豆 > - 9 Q Q

うびん 川 ふかくがく きょう

Скопје, 2019 70 / 71

Скопје, 2019 71/71

Причини за појава на кусите врски

- Механички повреди на елементите од мрежата
 - прекин на спроводник кај надземен вод и негово паѓање на земјата,
 - механичка повреда на кабел
 - паѓање на гранка врз далекувод
 - испреплетување на фазните спроводници на далекуводот под дејство на силен ветар

Скопје, 2019

6/76

Скопје, 2019 5 / 76

Скопје, 2019 4 / 76

- Неправилни и невнимателни манипулации со расклопните уреди во постројките
- Нечистотии и стареење на изолацијата
- Птици и животни

MT (NEEC)

• Комбинација од претходно наведените причини

Штетни последици од кусите врски

- Струја на куса врска предизвикува големи сили кои може да оштетат или разорат делови на електричните уреди како собирници, расклопни уреди и намотки
- Максималната моментна вредност на струјата на куса врска се нарекува ударна струја на куса врска и е меродавна за големината на механичките напрегања на елементите од мрежата
- Термички напрегања на елементите поради нагло ослободената топлина создадена од струјата на куса врска
- Наглото паѓање на напонот може да доведе до загрозување на стабилноста на работата на системот поради значително намалување на синхронизационите сили кај генераторите, губење на синхронизмот, па дури и распаѓање на системот
- Опасни потенцијални разлики, создадени на површината на земјата непосредно во близина на местото на кусата врска предизвикани од струјното поле создадено од течење на струјата на куса врска низ земјата

BHMC

Видови на куси врски

MT (NEEC)

MT (TEEC)

- еднофазни куси врски 65%
- двофазни куси врски 10%
- двофазни куси врски со земја 20%
- трифазни куси врски 5%

Облик на струјата на кусата врска

При кусата врска, во синхроните генератори се одвива сложен електромагнетен процес којшто се манифестира со промена на нивните внатрешни реактанции во многу широки граници. Поради тоа струјата на куса врска во преодниот период се менува по прилично сложен закон. Таа се состои од две компоненти

- наизменична $i_p(t)$
- еднонасочна или апериодична i_a(t)

Обликот на струјата на куса врска може приближно да се опише со равенката

$$i(t) = \sqrt{2}I_p(t)\cos\omega t - i_a(t)$$

$$I_p(t) = (I'' - I')e^{-t/T'_d} + (I' - I)e^{-t/T'_d} +$$

Ι

イロト イラト イミト イミト ミークへで Скопје, 2019 9/76

I'', I', I се суптранзиентната, транзиентната и трајната струја на куса врска, T'_d, T'_d суптранзиентната и транзиентната временска константа на придушување.

 $T'_d = 0,02 \div 0,04 \text{ s}$ $T'_d = 1 \div 2 \text{ s}$

MT (TEEC)

BHMC

BHMC

Скопје, 2019 18 / 76

MT (NEEC)

Симетрични компоненти

$$\mathbf{I}_{f} = \mathbf{F} \cdot \mathbf{I}_{s}$$
$$\mathbf{I}_{s} = \mathbf{F}^{-1} \cdot \mathbf{I}_{f}$$
$$\mathbf{I}_{f} = \begin{bmatrix} \underline{I}_{A} \\ \underline{I}_{B} \\ \underline{I}_{C} \end{bmatrix} \quad \mathbf{I}_{s} = \begin{bmatrix} \underline{I}_{d} \\ \underline{I}_{i} \\ \underline{I}_{0} \end{bmatrix}$$
$$\mathbf{F} = \begin{bmatrix} 1 & 1 & 1 \\ \underline{a}^{2} & \underline{a} & 1 \\ \underline{a} & \underline{a}^{2} & 1 \end{bmatrix} \quad \mathbf{F}^{-1} = \frac{1}{3} \cdot \begin{bmatrix} 1 & \underline{a} & \underline{a}^{2} \\ 1 & \underline{a}^{2} & a \\ 1 & 1 & 1 \end{bmatrix}$$

Скопје, 2019 19 / 76

Пример 2

MT (NEEC)

На сликата е прикажан симетричен трифазен вод со сопствени импеданции на фазите $\underline{Z}_s = j10 \ \Omega$ и меѓусебни импеданции $\underline{Z}_m = j5 \ \Omega$. Водот се се напојува од симетричен трифазен генератор со напони на фазите $\underline{E}_a = E$, $\underline{E}_b = \underline{a}^2 \cdot E$ и $\underline{E}_c = \underline{a} \cdot E$, при што е $E = 230 \ V$ и $\underline{a} = e^{j \cdot 2\pi/3} = -1/2 + j\sqrt{3}/2$. На крајот од водот само на фазата a е приклучен отпорник $R = 10 \ \Omega$, додека фазите b и c се отворени. Да се пресметаат напоните на сите три фази на крајот од водот \underline{U}_a , \underline{U}_b и \underline{U}_c , како и струите во фазите \underline{I}_a , \underline{I}_b и \underline{I}_c . Пресметките да се направат на два начина

- а) Решавајќи го колото во фазен домен сметајќи дека тоа се состои од 3 еднофазни генератори, 3 меѓусебно спрегнати импеданции и 1 отпорник,
- б) Решавајќи го колото со примена на симетрични компоненти.

Пример 2б

$$\begin{split} \mathbf{\underline{U}}_{abc} &= \mathbf{\underline{E}}_{abc} - \mathbf{\underline{Z}}_{abc} \cdot \mathbf{\underline{I}}_{abc} \\ \mathbf{\underline{U}}_{abc} &= \mathbf{\underline{F}} \cdot \mathbf{\underline{U}}_{dio} \quad \mathbf{\underline{E}}_{abc} = \mathbf{\underline{F}} \cdot \mathbf{\underline{E}}_{dio} \quad \mathbf{\underline{I}}_{abc} = \mathbf{\underline{F}} \cdot \mathbf{\underline{I}}_{dio} \\ \mathbf{\underline{F}} &= \begin{bmatrix} 1 & 1 & 1 \\ \underline{a}^2 & \underline{a} & 1 \\ \underline{a} & \underline{a}^2 & 1 \end{bmatrix} \\ \mathbf{\underline{F}} \cdot \mathbf{\underline{U}}_{dio} &= \mathbf{\underline{F}} \cdot \mathbf{\underline{E}}_{dio} - \mathbf{\underline{Z}}_{abc} \cdot \mathbf{\underline{F}} \cdot \mathbf{\underline{I}}_{dio} \\ \mathbf{\underline{U}}_{dio} &= \mathbf{\underline{E}}_{dio} - \mathbf{\underline{F}}^{-1} \cdot \mathbf{\underline{Z}}_{abc} \cdot \mathbf{\underline{F}} \cdot \mathbf{\underline{I}}_{dio} \\ \mathbf{\underline{U}}_{dio} &= \mathbf{\underline{E}}_{dio} - \mathbf{\underline{Z}}_{dio} \cdot \mathbf{\underline{I}}_{dio} \\ \mathbf{\underline{U}}_{dio} &= \mathbf{\underline{E}}_{dio} - \mathbf{\underline{Z}}_{dio} \cdot \mathbf{\underline{I}}_{dio} \\ \mathbf{\underline{U}}_{dio} &= \mathbf{\underline{E}}_{dio} - \mathbf{\underline{Z}}_{dio} \cdot \mathbf{\underline{I}}_{dio} \\ \mathbf{\underline{U}}_{dio} &= \mathbf{\underline{U}}_{dio} - \mathbf{\underline{U}}_{dio} \cdot \mathbf{\underline{U}}_{dio} \\ \mathbf{\underline{U}}_{dio} &= \mathbf{\underline{U}}_{dio} - \mathbf{\underline{U}}_{dio} \\ \mathbf{\underline{U}}_{dio} &= \mathbf{\underline{U}}_{dio} \\ \mathbf{\underline{U}}_{dio} \\ \mathbf{\underline{U}}_{dio} &= \mathbf{\underline{U}}_{dio} \\ \mathbf{\underline{U}}_{dio$$

$$\mathbf{E}_{dio} = \mathbf{F}^{-1} \cdot \mathbf{E}_{abc} = \begin{bmatrix} E \\ 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} U \\ U \\ U \\ U \\ U \\ 0 \end{bmatrix} = \begin{bmatrix} E \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} Z \\ U \\ Z \\ V \end{bmatrix}$$
$$\mathbf{J} = \begin{bmatrix} U \\ U \\ U \\ Z \\ U \\ U \end{bmatrix}$$
 З одделни равенки
$$I_b = I_o + \underline{a}^2 \cdot I_d + \underline{a} \cdot I_i = 0$$
$$I_b = I_o + \underline{a} \cdot I_d + \underline{a}^2 \cdot I_i = 0$$
$$I_b = I_i = I_o$$
$$I_b = I_i = I_o$$
$$I_b = I_i = I_o$$
$$I_b = I_i = I_o = \frac{I_a}{3}$$

Пример 2б

$$\begin{bmatrix} \underline{U}_d \\ \underline{U}_i \\ \underline{U}_o \end{bmatrix} = \begin{bmatrix} E \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} \underline{Z}_d \\ \underline{Z}_i \\ \underline{Z}_o \end{bmatrix} \cdot \frac{I_a}{3}$$
$$\underbrace{U_d = E - \underline{Z}_d \cdot \frac{I_a}{3}}{\underbrace{U_i = -\underline{Z}_i \cdot \frac{I_a}{3}}{\underbrace{U}_o = -\underline{Z}_o \cdot \frac{I_a}{3}}$$
$$\underbrace{U_o = -\underline{Z}_o \cdot \frac{I_a}{3}}{\underbrace{U_o = -\underline{Z}_o \cdot \frac{I_a}{3}}$$
$$\underbrace{I_a = \frac{3 \cdot E}{3 \cdot R + \underline{Z}_d + \underline{Z}_i + \underline{Z}_o} = \frac{3 \cdot 230}{3 \cdot 10 + j5 + j5 + j20} = (11, 5 - j11, 5) \text{ A}$$

Пример 2б

$$\underline{U}_a = R \cdot \underline{I}_a = 10 \cdot (11, 5 - j11, 5) = (115 - j115) V$$

$$\begin{split} \underline{U}_{d} &= E - \underline{Z}_{d} \cdot \frac{\underline{I}_{a}}{3} = 230 - j5 \cdot \frac{11, 5 - j11, 5}{3} = (210, 833 - j19, 167) \, \mathrm{V} \\ \underline{U}_{i} &= -\underline{Z}_{i} \cdot \frac{\underline{I}_{a}}{3} = -j5 \cdot \frac{11, 5 - j11, 5}{3} = (-19, 167 - j19, 167) \, \mathrm{V} \\ \underline{U}_{o} &= -\underline{Z}_{o} \cdot \frac{\underline{I}_{a}}{3} = -j20 \cdot \frac{11, 5 - j11, 5}{3} = (-76, 667 - j76, 667) \, \mathrm{V} \\ \underline{U}_{b} &= \underline{U}_{o} + \underline{a}^{2} \cdot \underline{U}_{d} + \underline{a} \cdot \underline{U}_{i} = (-172, 5 - j256, 686) \, \mathrm{V}, \\ \underline{U}_{c} &= \underline{U}_{o} + \underline{a} \cdot \underline{U}_{d} + \underline{a}^{2} \cdot \underline{U}_{i} = (-172, 5 - j141, 686) \, \mathrm{V}. \end{split}$$

При решавањето на несиметричното коло со помош на симетрични компоненти струјата на потрошувачот се добива со проста формула

$$\underline{I}_a = \frac{3 \cdot E}{3 \cdot R + \underline{Z}_d + \underline{Z}_i + \underline{Z}_o}.$$

4.3.5

Скопје, 2019 29 / 76

目 のへの Скопје, 2019 28 / 76

Пример 2б

MT (NEEC)

MT (NEEC)

Ако еR=0 (еднофазна куса врска), за струјата на куса врска добиваме

$$\underline{I}_a = \frac{3 \cdot E}{\underline{Z}_d + \underline{Z}_i + \underline{Z}_o}$$

Симетричните компоненти на струјата на еднофазна куса врска се

$$\underline{I}_d = \underline{I}_i = \underline{I}_o = \frac{\underline{I}_a}{3} = \frac{E}{\underline{Z}_d + \underline{Z}_i + \underline{Z}_o}$$

BHMC

систем

Иста реактанција за сите 3 периоди.

Просечни вредности на реактанциите (%)

Вид на синхрони машини	X''_d	X'_d	X _d	X _i	X ₀
Турбогенератори	9 - 15	13 - 22	160 - 200	9 - 15	3 - 9
Хидрогенератори со придушна намотка	15 - 30	20 - 45	60 - 140	15 - 30	3 - 15
Хидрогенератори без придушна намотка	25 - 45	25 - 45	50 - 140	30 - 65	3 - 15
Синхрони компензатори	18 - 38	30 - 60	150 - 220	17 - 37	3 - 15

MT (NEEC)

MT (NEEC)

BHMC

・ロト・4回ト・モン・モン・モー・のへの

Скопје, 2019 36 / 76

Скопје, 2019 35 / 76

$$X_d = X_i = X_k = \frac{u_k}{100} \cdot \frac{U_n^2}{S_n}$$

-0

(ロ)、(問)、(E)、(E)、(E)、(O)()

MT (NEEC)

Скопје, 2019 48 / 76

Двофазна куса врска

DUMAC

< ロ > < 回 > < 臣 > < 臣 > < 臣 > < 臣 < ⑦ <</p>

Скопје, 2019

Вид на куса врска	\underline{Z}_k	\underline{p}_k	\underline{q}_k
Трифазна	0	0	0
Двофазна	\underline{Z}_i	-1	0
Двофазна со земја	$\frac{\underline{Z}_i \cdot \underline{Z}_0}{\underline{Z}_i + \underline{Z}_0}$	$\frac{-\underline{Z}_0}{\underline{Z}_i + \underline{Z}_0}$	$\frac{-\underline{Z}_i}{\underline{Z}_i + \underline{Z}_0}$
Еднофазна	$\underline{Z}_i + \underline{Z}_0$	1	1

Скопје, 2019 64/76

Скопје, 2019 65 / 76

Скопје, 2019 66 / 76

Матрична постапка

МТ (ПЕЕС)

MT (NEEC)

- Современите ЕЕС се просторно големи и имаат сложена топологија така што не можат да бидат решени без компјутер
- Еден ефикасен начин за решавање на електрични кола со компјутер е примена на методот на јазлови потенцијали
- За решавање на куси врски треба да се решат 3 електрични кола: директен, инверзен и нулти систем, т.е. ни требаат 3 матрици на импеданции $\underline{\mathbf{Z}}_d$, $\underline{\mathbf{Z}}_i$ и $\underline{\mathbf{Z}}_0$, а во суштина ни треба по една колона од матрицата на импеданции

$$\begin{split} \underline{Z}_d &= \underline{Z}_{kk}^d \quad \underline{Z}_i = \underline{Z}_{kk}^i \quad \underline{Z}_0 = \underline{Z}_{kk}^0 \\ \underline{J}_d &= \frac{\underline{E}}{\underline{Z}_d + \underline{Z}_k} \quad \underline{J}_i = \underline{p}_k \cdot \underline{J}_d \quad \underline{J}_0 = \underline{q}_k \cdot \underline{J}_d \\ \underline{U}_j^d &= \underline{E} - \underline{Z}_{kj}^d \cdot \underline{J}_d \quad j = 1, 2, \dots, n \\ \underline{U}_j^i &= -\underline{Z}_{kj}^i \cdot \underline{J}_i \quad j = 1, 2, \dots, n \\ \underline{U}_i^0 &= -\underline{Z}_{ki}^0 \cdot \underline{J}_0 \quad j = 1, 2, \dots, n \end{split}$$

ullet Иако ${f Z}={f Y}^{-1}$ ние никогаш нема да пресметуваме инверзна матрица BHMC

Една колона од матрицата на импеданции

Проблем: за дадена матрица $\underline{\mathbf{Y}}$ да се пресмета само колоната k од нејзината инверзна матрица <u>Z</u>.

Решение: бараната колона ќе ја добиеме како решение на следниот систем равенки

 $\mathbf{Y} \cdot \mathbf{U} = \mathbf{I}$

каде што векторот $\underline{\mathbf{I}}$ е полн со нули освен на позиција k каде што има единица

τ_ ∫	0	$i \neq k$,
$\underline{I}_j - \{$	1	i = k.

BHMC

Решение во Matlab I = zeros(n, 1); I(k) = 1; U = Y\I Bo Matlab никогаш нема да напишеме вака $Z = Y^{-1}$

MT (NEEC)

Пример 4.2 од книгата: За системот на сликата се познати $X^d_{EES}=2,5\,\Omega$ $X_T=10\,\Omega$, $x_d=0,4\,\Omega/{
m km}$ за сите водови. Со помош на матричната постапка пресметаат напоните и струи во прикажаниот ЕЕС за време на трифазна куса врска настаната кај јазелот 1. Пред настанување на кусата врска системот работел во режим на празен од.

Пример 8

		programi/primer_4_2_maty.m	
1 2 3 4 5 6	<pre>mreza = [4 3 10</pre>		
7 8 9 10 11 12	<pre>[p, k, x] = deal(mrez ngr = size(mreza, 1); n = max([p; k]);</pre>	a(:,1), mreza(:,2), mreza(:,3));	
13 14 15 16	<pre>A = sparse(1:ngr, p, sparse(1:ngr, k, Y = A' * sparse(1:ngr</pre>	ones(ngr, 1), ngr, n) ones(ngr, 1), ngr, n); , 1:ngr, 1./x) * A;	
18 19 20 21	Y = Y + sparse(ig, ig kv = 1; I = zeros(4,1); I(kv)	= 1;	
22 23 24 25 26	Z = Y\I Jd = 110/sqrt(3)/Z(kv Ud = 110/sqrt(3) - 7*	() Id	
27	Id = A*Ud./x	BUMC	다 > 《 큐 > 《 문 > 《 문 > 문 Creation 2010
	WIT (TIEEC)		CROIJE, 2019

Пример 8

MT (NEEC)

Во програмата се користи командата sparse која што ја има следната синтакса S = sparse(i,j,s,m,n)

Скопје, 2019 75 / 76

74/76

векторите i, j и s се користат за генерирање на ретка матрица со димензии $m \times n$ за чии елементи важи следното S(i(k), j(k)) = s(k). Векторите i, j и s треба да се со иста должина. Ако во s постојат елементи еднакви на нула тие се игнорираат, а доколку во і и ј има дупликати тогаш елементите од s на тие позиции се собираат.

S = sparse([3 2 3 4 1],[1 2 2 3 4],[1 2 3 4 5],4,4) S = . (3,1) 1 2 3 4 5 (2,2) (3,2) (4,3) (1,4) $\mathbf{S} = \left[\begin{array}{cccc} 0 & 0 & 0 & 5 \\ 0 & 2 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 0 & 0 & 4 & 0 \end{array} \right]$ ・ロト・1回ト・1回ト・1回ト・1回・1000

Пример 8			
<pre>>> primer_4_2_maty Y =</pre>			
(1,2) -0.0833 (2,2) 0.1458 (3,2) -0.0625 (1,3) -0.0500 (2,3) -0.0625			
(3,3) 0.2125 (4,3) -0.1000 (3,4) -0.1000 (4,4) 0.5000 Z =			
24.1667 19.1667 12.5000 2.5000 1d =			
2.6279 Ud = 0.0000 13.1397 30.6593			
56.9387 Id = 2.6279 1.5330 1.0950			
мт (пеес)	BHMC	다 · · · · · · · · · · · · · · · · · · ·	ଚ

Глава IV., Куси врски во елекціросперієціскиціє сисціями
Пример 4.3. До се одреди временскиот тек на струпто на куса преда за случај на тријанка куса врека ка гонденторог од претсоднита задица, доо пред претстанувањето на кусата врека генераторог работел во номинален редим $UC = U_{ex}^{-1} = I_{ex}^{-1}$ сосу сосу). За моготот на имедтаримето на кусата врека време
да се усвои пајненоволниот (критениот) случај за струдата во фазата κ , $a_{c}=\theta.$ Решение:
Најнапред ќе ги пресметаме режимските параметри <i>д</i> и <i>ф</i> што биле во номиналниот режим кој É претходел на кусата врека: S
$I_{n} = \frac{-\pi}{\sqrt{3}} = 150'1, 73 \cdot 15, 75 = 5, 5 \text{ kA}; \phi_{n} = \text{are cos}(0, 9) = 25, 84^{\circ}.$ Понатаму, во согласност со сликите П.4.3.1 и П.4.3.2, ќе имаме:
$\label{eq:generalized_states} \mbox{tg} \theta_n = \frac{X_q \cdot I_{nq'} \cdot \cos \varphi_n}{U_{nq'} + X_q \cdot I_{nq'} \cdot \sin \varphi_n} \Longrightarrow \mbox{tg} \theta_n = \frac{1,24 \cdot 5,5 \cdot 0,90}{9,093 + 1,24 \cdot 5,5 \cdot 0,328} = 0,509 \ ;$
$\begin{split} &\Rightarrow \theta_{a} = \arctan(0, 509) = 26, 96^{\circ} \\ &I_{d} = I_{af} \cdot \sin(\theta_{a} + \varphi_{a}) = 5, 5 \cdot \sin(26, 96^{\circ} + 25, 84^{\circ}) = 4,466 \ \text{kA} \; . \end{split}$
$ \xrightarrow{q} F_{x}^{q} $
$\mu_{d_{d_{d_{d_{d_{d_{d_{d_{d_{d_{d_{d_{d_$
$\frac{iX_{q}I_{q}}{U_{q}}$
$\theta_a + \theta_a + I_a$ I_a
Слика II.4.3.1. Фолорски дијатрам од сликата II.4.3.2. Заротиран физорски дијатрам од сликата II.4.3.1.
Бидејќи пред настанувањето на кусата врска генераторот работел со напон еднаков на номиналниот ($U = U_{\mu}$), вредностите за струите I_0^* , I_0^* и I_0
ќе бидат исти како и во примерот од претходната задача, т.е: $I_0^* = 27,742$ kA , $I_0' = 18,333$ kA и $I_0 = 4,583$ kA. Според тоа, во случајов ќе имаме:
7
Глава IV , Куси преки во елекфроенерјейскийе сисфени
$I^* = I_0^* + I_d = 27,472 + 4,466 = 31,938 \text{ kA};$ $I' = I_0^* + I_d = 18,333 + 4,466 = 22,799 \text{ kA};$
$I=I_0+I_d=4,583+4,466=9,049$ kA . Се разгледува струјата во фазата "А". Во тој случај, согласно условот
во задачата, ке имаме: $\alpha_0 = \theta_a = 26.96^\circ.$ Понатаму, ефективната вредност на наизменичната компонента на струјата
на куса врска $I_p(t)$, која е иста за сите три фази, ќе биде: $I_p(t) = (31,938 - 22,799) \cdot e^{-25t} + (22,799 - 9,049) \cdot e^{-t} + 9,049 kA ,$
$I_{g}(t) = 9,139 \cdot e^{-25t} + 13,75 \cdot e^{-t} + 9,049 kA$. Конечно, временските текови на фазните струи $i_{d}(t)$, $i_{B}(t)$ и $i_{C}(t)$ за
време на кусата врска ќе бидат: $i_A(t) = \sqrt{2} \cdot I_p(t) \cdot \cos(\omega t - \theta_n) - \sqrt{2} \cdot I_0^{*} \cdot \cos(0) \cdot e^{-6,667t};$
$\begin{split} i_B(t) &= \sqrt{2} \cdot I_p(t) \cdot \cos(\omega t - \theta_n - 2\pi/3) - \sqrt{2} \cdot I_0^n \cdot \cos(-2\pi/3) \cdot e^{-\theta_0 \delta \sigma 7t}; \\ i_C(t) &= \sqrt{2} \cdot I_p(t) \cdot \cos(\omega t - \theta_n + 2\pi/3) - \sqrt{2} \cdot I_0^n \cdot \cos(+2\pi/3) \cdot e^{-\theta_0 \delta \sigma 7t}. \end{split}$
8
Глава IV , Куси врски во елекійроенеріейский с сисійеми
рестични периода (суптраниется) струпте па куса врема во трите каракте- рестични периода (суптраниетсят, празнаетсяте и транс), како и соод- вствите времетраења на овне периоди за случајот на трифазна куса врека настаната:
 а) на почетокот од водот V (место К1), б) на крајот од водот V (место К2 на сликата П.4.4.1).
Пред настанувањето на кусата врска генераторот работел во режим на празен од.
$G \rightarrow O$
Слика П.4.4.1. Кврактеристични места на настанување на кусата врска
Податоци за параметрите на еземенните: - генератор G: = 150 МА- I/ = 15 75 kV: у % = 120%: у % = 30%: у % = 20%:
$x_{q}^{s} = 75\%$, $\cos q_{r} = 0.90$; $T_{d}^{s} = 0.04$ s; $T_{d}^{s} = 1.0$ s; $T_{d} = 0.15$ s. - rpanecipoparop T:
$\begin{split} S_{u} &= 150 \text{ MVA}; \ U_{1u}/U_{2u} &= 15,75/121 \text{ kV/kV}; \ u_{k}\% &= 12\% \text{ ; } \ X_{T}/R_{T} = 25. \\ &- \log_{1} \text{ V}; l = 100 \text{ km}; \ z = (r + j \alpha) = (0,064 + j 0,33) \ \Omega/\text{km}. \end{split}$
Решение: Пресметката на кусите врски кои настанале некаде во мрежата се
врши со истите формули со кои се решаваат кусите врски настанати кај самнот тенератор (види примери 4.2 и 4.3). Значи, разгинка во постапката за пресметување практично нема. Единствената разлика којашто постои помеѓу одно вре слизија со состои, во до до што, соста, изместо за со опеноно со
очите дока случаја се состои во года што сега, начесто да се оперира со природните параметри на спикуоннот гентаритари, се се со прикажано на сликата 1.4.4.2. Значи, сега параметрите на генераторите на тенератоте се изменета. Консиќи те го
опфаќаат и влијанието на импеданцијата на мрежата $\underline{Z}_M = M_M + M_M$, т.е. влијанието на еконивантната импеданција на елементите од мрежата што се наоѓаат помеђу клемите на генераторот и мстото на кусата врека.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\vec{X_{a}}$ $\vec{T_{a}}$ $\vec{Z_{ab}}$ $\vec{Z_{bb}}$ $\vec{Z_{bb}}$ $\vec{Z_{bb}}$ $\vec{Z_{bb}}$ $\vec{Z_{bb}}$
со номош на "ексвивалентен генератор"
9

алава IV , Куси врски во о	лектроенергейскийе с	исићеми	
Притоа важат следн $X_{de}^{s} = X_{d}^{s} + X_{M}$; Л	ите односи: $I'_{de} = X'_d + X_M; X_{de} = J$	$I_d + X_M$;	
$R_e = R + R_M = \frac{X_d^*}{\omega_c T}$	$+ R_M$;		
$w \cdot i_a$ $m = X_d \cdot X_d^*$	e me me Xa X'ae m	$L^{*}_{de} = X^{*}_{de}$	
$T_{de} = T_d^* \cdot \frac{a}{X_d^*} \cdot \frac{a}{X_d'}$	$ T_{de} = T_d \cdot \frac{u}{X'_d} \cdot \frac{u}{X_{de}}; T_{de} $	$ae = \frac{ae}{R_e} = \frac{ae}{\omega \cdot R_e}$	
Во последните изра жвивалентните реактанц	ізи со X [#] _{de} , X ['] _{de} , X _{de} , ии и еквивалентните в	T [#] _{de} , T [*] _{de} и T _{ae} се означ чеменски константи на го	чени
хаторот преку кои е уваж узначена активната отпор горот и доколку не е	ено влијанието на мрея мост (по фаза) на стат лиректно залалена т	ата. Во истите изрази со орските намотки од ген-	o R e iepa-
пресмета преку познат апериоличната компонен	ата временска конст га на струјата на куса в	на може приолижно да анта на придушување оска T. со помош на изра	а се : на азот:
$T_a \approx X_i / \omega R \approx X_d^* / \omega R$, o) пресметка на отпорноста	ц каде што следува г R.	оре употребениот израз	3 38
а) Кусата врска наста	нала на почетокот на	водот (место K1);	
Во овој случај, за им	педанцијата на мрежат	а ќе имаме:	
$\underline{Z}_M = \underline{Z}_T = R_T + jX_T.$ Параметрите на трансфор	маторот, сведени на SN	страна, ќе бидат:	
$X_T = \frac{u_k \%}{100} \cdot \frac{U_n^2}{E} = \frac{12}{10}$	$\frac{2}{\alpha} \cdot \frac{15,75^2}{150} = 0,198\Omega$;	$R_T = X_T / 25 = 7,92 \text{ m}\Omega;$	
$\underline{Z}_M = \underline{Z}_T = (7,92 + 1)$	/198) mΩ .		
Параметрите на си претхолната залача, изнес	нхрониот генератор, п суваат:	коишто беа пресметани	л во
$X''_d = 331 \mathrm{m}\Omega; \; X'_d = 496 \mathrm{m}$	$n\Omega$; $X_d = 1984 \mathrm{m}\Omega$; T_d'' :	= 0,04s; $T'_d = 1s; T_a = 0,15$	5 s.
Сега ќе имаме: X [#] _{de} = 331+198 = 529	$0 \text{ m}\Omega; X'_{de} = 496 + 198 =$	694 mΩ;	
$X_{de} = 1984 + 198 = 2$ $R = R + R_{14} = 7.03 + 100$	$182 \text{ m}\Omega$; 7 92 = 14 95 mO		
$T^*_{e} = T^* \cdot \frac{X'_d}{X'_d} \cdot \frac{X^*_{de}}{X'_{de}} = 1$	$0.04 \cdot \frac{496}{529} = 0.046 \text{ s}$		
$T_{de} = T_{d} = X_{d}^{*} = X_{de}^{*}$ $T_{T} = T_{T}^{*} = X_{d} = X_{de}^{*}$	331 694		
$I_{de} = I_d \cdot \frac{X'_d}{X'_d} \cdot \frac{X_{de}}{X_{de}} =$	496 2182 = 1,2728	3	
$R = \frac{X_d}{\omega \cdot T_a} = \frac{0,331}{314 \cdot 0,12}$	$\frac{1}{5} = 7,03 \mathrm{m}\Omega;$		
	10		
	10		
			-
Глава IV , <i>Куси врски во в</i>	лектроенергейските с	исшеми	
$R_{-} = R + R_{-} - 14$ 0.5	$m\Omega : T_{} = \frac{X_{de}^{*}}{2} - 0^{11}$	3 s.	
I/ . 0.00	$a_{ee} - \frac{1}{\omega \cdot R_e} = 0,11$		
$I'' = I_0'' = \frac{x_{ij}}{X_{de}''} = \frac{x_{i}0y}{0.52}$	= 17,19 kA ;		
$I' = I'_0 = \frac{U_{nf}}{X'_{de}} = \frac{9,09}{0,694}$	= 13,103 kA ;		
$I = I_0 = \frac{U_{nf}}{X_0} = \frac{9,093}{2.182}$	= 4,167 kA.		
de e, com		нала на почетокот од вс	одот
Значи, во случајот и место "К1"), ќе ја имаме	кога кусата врска наста следната ситуација:		
Значи, во случајот и место "К1"), ќе ја имаме Период	кога кусата врска наста следната ситуација: Струја	Времетраење	
Значи, во случајот и место "К1"), ќе ја имаме Период Суптранзиентен	кога кусата врска наста следната ситуација: Струја I" = 17,19 kA I' = 13,102 kA	Времетраење $\approx 3T'_{de}=0,14s$ $\approx 3T''_{de}=3.82c$	_
значи, во случајот и место "КГ"), ке ја имаме <u>Период</u> Суптранзиентен Транзиентен Траем	кусата врска наста следната ситуација: Струја I" = 17,19 kA I' = 13,103 kA I = 4,167 kA	Bpemempaenee $\approx 3T_{de}^{s}=0,14s$ $\approx 3T_{de}^{s}=3,82s$ ∞	
значи, во случајот т место "КГ"), ќе ја имаме <u>Период</u> <u>Суптракиментен</u> Трасн – време на придушување 6) Кусстав срема настис 6) Кусстав срема настис во овој случај ќе ја пресмет- во овој случај ќе ја пресмет-	ога кусата врека наст селната ситуација: <u>Струја</u> I'' = 17,19 kA I' = 13,103 kA I = 4,167 kA е на апериодичната ком струјата на куса врека: нада на крајот од воде када $Z_{IJ} = Z_{T} + Z_{T} = (I)$ ме вредноста на имна ата (SN) страна од тран	Bpexemparese $=3T_{ab}^{*}=0.14s$ $=3T_{ab}^{*}=3.82s$ ∞ nonentra: $=3T_{ab}^{*}=0.34s$ k_{a} $=1 - e^{-0.017ac} = 1.915$. <i>m</i> (<i>secono</i> K2); $r_{7} + R_{7} + r_{7} + 3s$ r_{2} -manupirar in a sogar Z_{2} r_{2} -mapping and r_{2} -ma	ITOA,
The energy of the second seco	юга кусята врска наст. селцията сптумија:	$\label{eq:starting} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	170a, F-av ; Ω;
The energy of the second seco	oron is year a poice a user Cappyia I' = 17, 19 KA I' = 17, 10 KA I = 4, 167 KA	$\label{eq:second} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	170a, F-av ; Ω;
$\begin{array}{c} I_{M} = (-1)^{-1} \\ Sharen, iso crysuipor TSharen, iso crysuipor TSharen, iso crysuipor TInsurance (-1)^{-1} CympannaenreauTpannerreauTpannerreauTpannerreauTpannerreauDio one crysuig ie 6M (-1)^{-1} Sharen apeca naemDio one crysuig ie 6M (-1)^{-1} Sharen apeca naemDio one crysuig ie 6M (-1)^{-1} Sharen apeca naemCompany sussee:Ry = R_{+} + R_{+} = -1Z_{+} = (-1)^{-1} Sharen - 2 Shar$	ora is year a picas itaer: $\frac{Cappy_{10}}{I^{rr} = 17, 19 \text{ KA}}$ $I^{rr} = 17, 10 \text{ ISA}$ $I^{rr} = 13, 103 \text{ KA}$ $I^{r} = 4, 167 \text{ KA}$ Ir a nephoagreear a key a speca: erry system is a key as speca: erry system is a key as a pica: erry system is a key as a pica: erry system is a set of the system is a system of the system is a error system is a system is a system of the system is a system of the system is a error system is a system of the syst	$\label{eq:second} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	170a, F ₄ α ,
$\begin{aligned} \frac{J_{HH}}{J_{HH}} &= 0 \text{ cyclup ior } \\ \frac{J_{HH}}{J_{HH}} &= \frac{J_{HH}}{J_{HH}} \\ $	ora is year a picas itaer: Capitra crystamija: P = 17, 19 kA P = 17, 19 kA I = 4, 167 kA I =	Bpc unemparise $=3T_{de}^{-}-0.14s$ $=3T_{de}^{-}-0.14s$ $=3T_{de}^{-}-0.34s$ m <td< td=""><td>πτοα, Γ_α, Ω;</td></td<>	πτοα, Γ _α , Ω;
$\frac{J_{AB}}{J_{AB}} = \frac{J_{AB}}{J_{AB}} = J$	ora is year a picas itar: Capityia $I^{r} = 17, 19 \text{ KA}$ $I^{r} = 17, 103 \text{ KA}$ $I^{r} = 13, 103 \text{ KA}$ $I^{r} = 13, 103 \text{ KA}$ $I^{r} = 4, 167 \text{ KA}$ Ita a nephologenium ra kowa o crybyiara ita skyca npeca: mada na spejaniora na watu mada na spejaniora na watu maga ngenium ra kawa ngeni como spesiniora na watu como spesiniora na watu como spesiniora na watu spesiniora na managanagi ra (SN erjania Sata Sata Sata Sata Sata Sata Sata Sa	$\begin{array}{c} \hline Bpe usemparese \\ = 3T_{de}^{-} - 0.14s \\ = 3T_{de}^{-} - 0.14s \\ = 3T_{de}^{-} - 3.82s \\ \hline m \\ m \\$	ποα,
J_{ad} = (-τ) k _a ² for a sequence (-T) k _a ² for a masse I_{ad} = (-τ) (-1) for a mass masse I_{ad} = (-1) (-1) for a mass masse I_{ad} = (-1) (-1) for a masse I_{ad} = (-1) (-1) for a mass masse I_{ad} = (-1) (-1) (-1) (-1) (-1) (-1) (-1) (-1)	oran isyeria apican acir compared and a set of the	Bpecomparese $=3T_{de}^{-}-0.14s$ $=3T_{de}^{-}-0.14s$ $=3T_{de}^{-}-0.34s$. ∞ n_{ac} $n_{ac}^{-}-0.34s$. $n_{ac}^{-}-0.35s$. $(6, 4+J3)$ Ω_{1}^{-} $n_{ac}^{-}-0.08s$.	πτοα,
$\begin{aligned} \frac{1}{M} & = (rr) + \frac{1}{M} $	word n yeart appear angen comma regram appear angen <i>I</i> ⁻¹ = 17,19 k A <i>I</i> ⁻¹ = 17,19 k A <i>I</i> ⁻¹ = 17,19 k A <i>I</i> = 4,167 k A <i>I</i> =	Bpewemparene $=3T_{de}^{-}-0.14s$ $=3T_{de}^{-}-0.14s$ $=3T_{de}^{-}-0.34s$. ∞ nonerritz: $=3T_{de}^{-}-0.34s$. $k_{\pi} = 1 + e^{-0.817t} m^{-}-0.34s$. (6, 4 - 1/3) Ω; (121)^2 = (0, 108 + j.0.559); riperscontineer crystaj "a" riperscontineer crystaj "a" $T_{de}^{-} = 0.028 s$. $T_{de}^{-} = 0.28 s$. $T_{de}^{-} = 0.028 s$.	πτοα,
Z_{ab} = (1) $Z_$	work system appear and the second and the system of the system and the system appears ano	$\label{eq:2.1} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	πτοα, -α
$L_{de} = (-1)^{-1}$ (с) на измен Вачен, во случајот г Пушен со сучајот г Пушен со сучајат с Суптранланетен Транитен тране на присупујања – узарен косфициент на Во овеј сучаја се б Во овеј сучаја се б Пошта деха насто Суптранланета на сремотопонси $\underline{Z}_{de} = \underline{z}^{-1} = (-r, B) \cdot l$ Поштаку визмен: $R_{M} = R_{de} + R_{de} - 2$ Мотанау визмен: $R_{M} = R_{de} + R_{de} - 2$ $M_{de} = (16 + f757) m$ Вобиме сарите реулт $M_{de} = 496 + 757 - 12$ $M_{de} = 496 + 757 - 12$ $M_{de} = 496 + 757 - 12$ $M_{de} = 1984 + 757 - 2$	work system appear and a system of a system appear and a system of a system	$\label{eq:2.1} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	πτοα,
$Z_{dd} = (rr)$ Значи, во случајот г Лачки, во случајот г Пушков со учајот г Пушковани со случаје об суптранланетнен Транитене трани па присупујања во онеј случаје еб по случаје еб во онеј случаје еб по случаје еб по случаје еб случаје со случаје еб по случаје еб по случаје со случаје еб случа – случа, случа – случа, случа случа – случа, случа, случа случа – случа, сл	ora is year a picas itary $\frac{ P =17, 19 \text{ KA}}{ P =17, 19 \text{ KA}}$ $\frac{ P =17, 10 \text{ KA}}{ P =17, 19 \text{ KA}}$ $\frac{ P =17, 10 \text{ KA}}{ P =17, 19 \text{ KA}}$ $\frac{ P =17, 19 \text{ KA}}{ P =17, 19 \text{ KA}}$ $\frac{ P =17, 19 \text{ KA}}{ P =17, 19 \text{ KA}}$ $\frac{ P =17, 19 \text{ KA}}{ P =17, 19 \text{ KA}}$ $\frac{ P =17, 19 \text{ KA}}{ P =17, 19 \text{ KA}}$ $\frac{ P =17, 19 \text{ KA}}{ P =17, 19 \text{ KA}}$ $\frac{ P =17, 19 \text{ KA}}{ P =17, 19 \text{ KA}}$ $\frac{ P =17, 19 \text{ KA}}{ P =17, 19 \text{ KA}}$ $\frac{ P =17, 19 \text{ KA}}{ P =17, 19 \text{ KA}}$ $\frac{ P =17, 19 \text{ KA}}{ P =17, 19 \text{ KA}}$ $\frac{ P =17, 19 \text{ KA}}{ P =17, 19 \text{ KA}}$ $\frac{ P =17, 19 \text{ KA}}{ P =17, 19 \text{ KA}}$ $\frac{ P =17, 19 \text{ KA}}{ P =17, 19 \text{ KA}}$ $\frac{ P =17, 19 \text{ KA}}{ P =17, 19 \text{ KA}}$ $\frac{ P =17, 19 \text{ KA}}{ P =17, 19 \text{ KA}}$ $\frac{ P =17, 19 \text{ KA}}{ P =17, 19 \text{ KA}}$ $\frac{ P =17, 19 \text{ KA}}{ P =17, 19 \text{ KA}}$	$\label{eq:2.1} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	100a,
Павет, но случајот г Ванча, но случајот г Пушков со учајот г Пушковани со учајот г Пушковани со учаја со случаја сл	ora is year a picas itary $\frac{ P }{ P } = 17,19 \text{ KA}$	$\begin{tabular}{ c c c c c } \hline & Bpetwemparese \\ = 3T_{de}^{-} - 0.14s \\ = 3T_{de}^{-} - 0.14s \\ = 3T_{de}^{-} - 0.34s \\ + 3T_{de}^{-} - 0.34s \\ + s - 1 + e^{-0.077m} = 1.915. \\ \hline & m (second C2); \\ + r^{-} - R_1 + e^{-0.077m} = 1.915. \\ \hline & (6, 4 + J33) \ \Omega; \\ \hline & (6, 4 + J33) \ \Omega; \\ \hline & (121)^2 = (0, 108 + j \ 0.559); \\ \hline & $mperscontineer crystal \ ^{-} - a_{de}^{-} - a_{de}$	100a, 1-α
Павет, но случајот г Ванча, но случајот г Павет, но случајот г Пуштранливентен Прави – узарен косфициент на По окједина реди абили Во окједуна је ја презент Во окједуна је ја презент Во окједуна је ја презент Во окједуна је ја презент Во окједуна је ја презент По сли аркон аркон абили $Z_{4} = z^{-1} (z_{1}(x) - z_{2})$ Поштану мимен: $R_{4} = R_{4} + R_{4} - z_{7}$ $Z_{4} = (16 + f57) т Повитану мимен: Повитану мимен: X_{4} = 314 - 757 - 10X_{4} = 496 + 757 - 12X_{4} = 194 + 1572 - 2Според год, во случвного коспросматела на роблека са оказа иСпоред год, во случвного коспросматела на роблека са оказа иСпоред год, во случСпоред год, во случ$	огот вусята вреза наст. селената сатуација: P = 17, 19 KA I' = 17, 10 KA I' = 17, 10 KA I = 4, 167 KA на алериодичната ком струјата на куса вреса: струјата струјата струга вреса: струјата струга вреса: струјата струга вреса: струјата струга вреса: струјата стругата вреса: струјата струга вреса: струјата стругата вреса: струјата стругата вреса: струјата струга вреса: струјата стругата вреса: струјата стругата вреса: струјата струга вреса: струјата струга вреса: струјата стругата вреса: струјата струга: струјата струга вреса: струјата струга струга струга вреса: струјата струга струга струга вреса: струјата струга: струјата струга вреса: струјата струга вреса: струјата струга вреса: струјата струга струга струга вреса: струјата струга струга: струјата струга струга: струјата струга струга: струјата струга	Bpessemparese $a_3T_{de}^-0.14s$ $a_3T_{de}^-0.14s$ $a_3T_{de}^-0.34s$ a_6 noncerns: $a_3T_{de}^-0.34s$ $k_s = 1 + e^{AB/Tar} = 1.915$. m (second K2): $(f_s, F_s) + g(X_s, F_s)$ a_3 annular na soart Z_s $(f_s, F_s) + g(X_s, F_s)$ a_8 a_8 a_8 $(f_s, f_s) = 1, g(X_s, F_s)$ a_8	100a, , τ. , τ. , πο ο,οοτ
Парани, во случајот Ванча, во случајот Парано, во случајот Прави Суптранливентен Транитентен Транитентен Транитентен Транитентен Во опеј случаја је б подрана декла насви Во опеј случаја је б Подрани декла насви Суптранливентен Суптранливентен Суптранливентен Суптранливентен Суптранливентен Санков Суптранитентен Силона Суптранитентен Силона Суптранитентен Силона Суптранитентен Силона Суптранитентентентентентентентентентентентентент	огота кусята врема наста селената сатуација: $\frac{Caupyja}{l^2 = 17, 19 k A}$ $l^2 = 17, 19 k A$ l = 4, 167 k A на алериодичната ком струјата на куса вреса: струјата на куса вреса: струја струја струја $\frac{C T p y j a}{l^2} = 6, 27 J T A$	$\begin{tabular}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $	100a, 1-α Ω; [*] , 100 0.707
Паренти и предокти и	огота кусята врема наста самита сигунија: P = 17,19 kA P = 17,19 kA I = 1,103 kA I = 4,167 kA I = 2,-7 $Z = 1/2I = 0,064 + (0.3,03) + 100 - 200$	$\begin{tabular}{ c c c c c } \hline & Bpeacomparemeter & $3T_{de} = 0.14s$ & $3T_{de} = 0.14s$ & $3T_{de} = 0.14s$ & $3T_{de} = 0.32s$ & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	ατοα,
Пара струкцот Парача, во случајот Парача, во случајот Парано Суптранливентем Транон Транон транон Парано султранливентем Транон Во опеј случај је б во случај је с Во опеј случај је б парана дека пасна Суптранливента на сремоналност $Z_{\mu} = z - (z - (t - t) x) - t)$ Понатаму каканс $R_{\mu} = R_{\mu} + R_{\mu,m} = 7,$ $X_{\mu} = z - (z - (t - t) x) - t)$ Понатаму каканс $R_{\mu} = R_{\mu} + R_{\mu,m} = 7,$ $X_{\mu} = z - (z - (t - t) x) - t)$ Понатаму каканс $R_{\mu} = R_{\mu} + R_{\mu,m} = 7,$ $X_{\mu} = 496 + 757 = 12$ $X_{\mu} = 1084 + 757 = 12$ $X_{\mu} = 1084 + 757 = 22$ Спора ток до 184 - 496 - 757 = 12 $X_{\mu} = 1084 + 757 - 22$ Спора ток до 184 - 496 - 757 = 12 $X_{\mu} = 1084 + 757 - 22$ Спора ток до 184 - 496 - 757 = 12 $X_{\mu} = 1084 + 757 - 22$ Спора ток до 184 - 496 - 757 = 12 $X_{\mu} = 1084 + 757 - 22$ Спора ток до 184 - 875 - 22 Спора ток до 184 - 875 - 22	огота кусята врема наста самита сигунија: $\frac{Cupyja}{l^2 = 17,19 kA}$ $l^2 = 17,19 kA$ $l^2 = 1,103 kA$ l = 4,167 kA l = 0,064 + (0.33) + (0.03)	$\begin{tabular}{ c c c c c } \hline & Bpeacemparence & = 3T_{de} = 0.14s & = 3T_{de} = 0.32s & = 10000000000000000000000000000000000$	
Павет, но случајот такот случајот такот случајот такот КГТ) ќе ја лимане Павета, но случајот такот случај случарни на придунувањителе Транита придунувањителе Транита случај се бана случа случај се случај се бана случа случај се	огота кусята врема наста самита сигунија: P = 17,19 kA P = 17,19 kA P = 13,103 kA I = 4,167 kA I = 1,257 kA I = 3,317 kA sano corr an average of corr corr system I = 1,257 kA I = 3,317 kA sano corr an average of corr corr system I = 3,317 kA sano corr an average of corr corr system I = 3,317 kA sano corr an average of corr corr system I = 3,317 kA sano corr an average of corr corr system I = 3,317 kA sano corr an average of corr corr system I = 3,317 kA sano corr an average of corr corr system I = 3,317 kA sano corr an average of corr corr system I = 3,317 kA sano corr an average of corr corr system I = 3,317 kA sano corr an average of corr corr system I = 3,317 kA sano corr an average of corr corr system I = 3,317 kA sano corr an average of corr corr system I = 3,317 kA sano corr average of corr corr system I = 3,317 kA sano corr average of corr corr system I = 1,317 kA sano corr average of corr corr system I = 1,317 kA sano corr average of corr corr system I = 1,317 kA sano corr average of corr corr system I = 1,317 kA sano corr average of corr corr system I = 1,317 kA sano corr average of corr corr system I = 1,317 kA sano corr average of corr corr system I = 1,157 kA I = 1,317 kA sano corr average of corr corr system I = 1,157 kA I = 1,317 kA	$\label{eq:constraints} \begin{array}{ c c c c c } \hline & Bpeacomparement \\ = 3T_{dc}^{-} - 0.14s \\ = 3T_{dc}^{-} - 0.34s \\ \hline & a 3T_{dc}^{-} - 0.34s \\ \hline & a 3T_{dc}^{-} - 3.82s \\ \hline & a 3T_{dc}^{-} - 3.82s \\ \hline & a 3T_{dc}^{-} - 3.82s \\ \hline & a 3T_{dc}^{-} - 1.915. \\ \hline & m (second SZ); \\ r_{T} - R_{1}^{-} - x_{1}^{-} + x_$	nroa,
Гавен, по случајот гамане Перевот К-ГУ, ќе ја плавае Перевот К-ГУ, ќе ја плавае Перевот К-ГУ, ќе ја плавае Гулирантментен Трант Трант По под случај ќе б правит Во под случај ќе б правитану сирановного $\underline{Z}_{\mu} = \underline{z} - l = (r + j) \cdot l$ Полатану изкаче $R_{\mu} - R_{\mu} + R_{\nu,m} - 7,$ $X_{\mu} = \underline{z} - (l - d / l - f / l$	огота кусята врема наста самита ситуиціја: $\frac{Capyrja}{l^2 = 17,19 kA}$ $l^2 = 17,19 kA$ $l^2 = 14,167 kA$ $l^2 = 4,167 kA$ $l^2 = 2,-2 kA$ $l^2 = (0,664 + (0,33) \cdot 100 - 0)$ $3)^2 = (6, 4 + j33) \cdot (15,75)$ $92 + 108 = 116 m\Omega;$ 98 + 559 - 757 mG; $\Omega = 0,664 + (0,33) \cdot 100 - 0$ $33)^2 = (6, 4 + j33) \cdot (15, 75)$ $92 + 108 = 116 m\Omega;$ 98 + 559 - 757 mG; $\Omega = 0,664 + (0,33) \cdot 100 - 0$ $33)^2 = (6, 4 + j33) \cdot (15, 75)$ $92 + 108 = 116 m\Omega;$ $92 + 108 = 116 m\Omega;$ $33)^2 = 0,64 + j33 \cdot (15, 75)$ $92 + 108 = 116 m\Omega;$ gas x = 357 kA $l^2 = 3,377 kA$ $l^2 = 3,377 kA$	$\begin{tabular}{ c c c c c } \hline & Bpeakemparene \\ = 3T_{de}^{-} - 0.14s \\ = 3T_{de}^{-} - 0.14s \\ = 3T_{de}^{-} - 0.34s \\ = 3T_{de}^{-} - 0.34s \\ = 1 + e^{-0.077w} - 1.915. \\ \hline & m (second S2); \\ r_{T} - R.) + 3(X_{T} + X_{T}) - 32s \\ r_{T} - R.) + 3(X_{T} + X_{T}) - 32s \\ = 0.108 + (0.08 + 0.559); \\ \hline & metroannew reaves \\ (6, 4 + J33) \ \Omega; \\ (121)^{2} = (0.108 + J0.559); \\ \hline & metroannew reaves \\ (6, 4 + J33) \ \Omega; \\ (121)^{2} = (0.108 + J0.559); \\ \hline & metroannew reaves \\ (6, 4 + J33) \ \Omega; \\ (7d_{de}^{-} - 0.28 + 8s \\ A; \ T_{de}^{-} - 0.$	rroa,
Taken the conjunction of the second	огота кусята врема наста самита ситуација: $\frac{Cupyja}{l^2 - 17,19 kA}$ $l^2 = 17,19 kA$ $l^2 = 14,167 kA$ $l^2 = 4,167 kA$ $l^2 = 4,167 kA$ $l^2 = 4,167 kA$ $l^2 = 4,167 kA$ $l^2 = 0,664 + (0,33) - 100 - 000000000000000000000000000000$	$\begin{tabular}{ c c c c c c } \hline & Bpearsmarker & sT_{de}^{-} - 0.14s & sT_{de}^{-} - 0.14s & sT_{de}^{-} - 0.34s & sT_{de}^{-} - 0.24s & sT_{de}^{-} - 0.16s & sT_{de}^{-} - $	 πτοα, τ_{car}, Ω *, πο ε τη οροτ
Taken the conjunction of the second	огот вусята врезя наст самита ситуација: $\frac{Cupyja}{l^2 - 17,19 kA}$ $l^2 = 17,19 kA$ $l^2 = 14,167 kA$ I = 4,167 kA I = 2,-7 & 2,-7 KA (0,664 + (0,33)-100 - 0,000 + 0,00	$\begin{tabular}{ c c c c c c } \hline & Bpearamatene \\ = 3T_{de}^{-} - 0.14s \\ = 3T_{de}^{-} - 0.14s \\ = 3T_{de}^{-} - 0.34s \\ = 3T_{de}^{-} - 0.34s \\ + 3T_{de}^{-} - 0.34s \\ + s^{-} = 1 + e^{-0.077w} - 1.915. \\ \hline & (second C2); \\ + r_{2} - R_{2}^{-} - s_{2}^{-} + R_{2}^{-} - s_{2}^{-} - s_{2}^{-} + R_{2}^{-} - s_{2}^{-} s_{2}^{-} - s_{2}^$	rigana na ma
Таки цо случајот Пакит, во случајот Пакит, во случајот Прано Суптранлентен Транти Транти Транти Прано Суптранлентен Поката Во под случај е б во под случај е б пранитен кај и презент Во под случај е к пранитен кај и презент Во под случај е к пранитен кај и презент Покатачу изкаче $Z_{\mu} = z l - (l - l + j) \cdot l Z_{\mu} = z l - (l - k) \cdot l Z_{\mu} = z l - (l - k) \cdot l Покатачу изкаче R_{\mu} = R_{\mu} + R_{\nu,m} = 7,X_{\mu} = Z + (l - k) \cdot l Покатачу изкаче R_{\mu} = R_{\mu} + R_{\nu,m} = 7,X_{\mu} = Z + (l - k) \cdot l Покатачу изкаче R_{\mu} = R_{\mu} + R_{\nu,m} = 7,X_{\mu} = Z + (l - k) \cdot l Покатачу изкаче R_{\mu} = R_{\mu} + R_{\mu} - 2,X_{\mu} = 2 + (l - k) \cdot lПокатачу изкачеR_{\mu} = R_{\mu} + R_{\mu} - 2,X_{\mu} = 2 + (l - k) \cdot lX_{\mu} = 2 + (l - k) \cdot lX_{\mu} = 2 + (l - k) \cdot lX_{\mu} = 2 + (l - k) \cdot l(D - k) (l - k) + (l - k) \cdot lR_{\mu} = 0.684 \cdot l– ударек косфициетk_{\mu} = 4 - e^{0.01/2} = 1,O - kooj пранет раз-R_{\mu} = R_{\mu} - R_{\mu} - lR_{\mu} = R_{\mu} - R_{\mu} - R_{\mu} - lR_{\mu} = R_{\mu} - R_{\mu} - R_{\mu} - lR_{\mu} = R_{\mu} - R_{\mu}$	огот вусята врезя наста самита ситуата врезя наста P = 17,19 kA P = 17,19 kA P = 17,19 kA I = 4,167 kA I = 2,17 kA I = 2,17 kA I = 0,064 + (0,3) - 100 - 0,03 - 100 - 0,03 - 100 - 0,03 - 100 - 0,03 - 100 - 0,03 - 100 - 0,03 - 100 - 0,000 -	$\begin{tabular}{ c c c c c } \hline & Bpeakemparene & sT_{ac}^{-} = 0.14s \\ & sT_{ac}^{-} = 0.14s \\ & sT_{ac}^{-} = 0.32s \\ \hline & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	jjara in πτα ηπα ηπα ηπα ηπα ηπα ηπα ηπα ηπ
Taken the coloring of the second sec	огот в усята врема наста самита ситуанија: P = 17,19 kA P = 17,19 kA P = 17,19 kA I = 13,103 kA I = 4,167 kA I = 2,17 kA I = -2,17 kA	Bpessemparese $=3T_{de}^{-}-0.14s$ $=3T_{de}^{-}-0.14s$ $=3T_{de}^{-}-0.34s$ $=3T_{de}^{-}-0.34s$ $=3T_{de}^{-}-0.34s$ $=3T_{de}^{-}-0.34s$ $k_{a}^{-}=1+e^{-0.074w}-1.915$ m (second S2): $=7T_{de}^{-}-0.34s$ $=3T_{de}^{-}-0.16s$ $=3T_{de}^{-}-0.02s$ $=3T_{de}^{-}-0.16s$ $=0.02s$ s. mechanometerm $=0.02s$ $=0.$	іїата пода, г _{ефт} ; но е ги одот
Z_{de} Z_{de} Baren, no crysuijor Impano Baren, no crysuijor Impano Cympannenren Tpano Tpano	огота кусята вреза наста самита ситуиціја: $\frac{Cupyja}{l^2 - (7,19 kA)}$ $l^2 = 17,19 kA$ $l = 13,103 kA$ $l = 4,167 kA$ I = 4,167 kA I = 2,-7 Z = 4,168 (1,00 kH + (0,33)-100 - 0,000 kH (1,00 kH + (0,33)-100 - 0,000 kH (1,00 kH + (0,33)-100 - 0,000 kH I = 0,064 + (0,33)-100 - 0,000 kH I = 0,00	Bpessemparene $=3T_{de}^{-}-0.14s$ $=3T_{de}^{-}-0.14s$ $=3T_{de}^{-}-0.14s$ $=3T_{de}^{-}-0.34s$ $=3T_{de}^{-}-0.34s$ $=3T_{de}^{-}-0.34s$ $=3T_{de}^{-}-0.34s$ $=3T_{de}^{-}-0.34s$ $=3T_{de}^{-}-0.34s$ $=3T_{de}^{-}-0.34s$ $=3T_{de}^{-}-0.34s$ $=3T_{de}^{-}-0.34s$ $=3T_{de}^{-}-0.16s$ $=0.00000000000000000000000000000000000$	
Taken the colymptot Taken the colymptot Taken the term of term of the term of term of the term of term o	огота кусята вреза наста селанита сатунија; P = 17,19 kA P = 17,19 kA P = 13,103 kA I = 4,167 kA I = 2,17 kA I = 0,064 + (0,3),100 of 20 = (0,64 + (0,3),100 or $3)^2 = (6,4 + (33), (15,75)$ 92 + 108 = 116 mC; 98 + 559 = 757 mC; Ω I = 0,064 + (0,3),100 or 20 = (7,76,75) kA I = 7,57 kA I = 3,317 kA nana, etca angeno, ary supera nge-a I and $I = 3,317$ kA nana, etca angeno, ary supera nge-a I corpy ja na kycara nge- I corpy ja na kycara nge- I, oc c $I = 7,253$ kA I = 3,317 kA nana, etca angeno, ary supera nge-a I, oc c $I = 7,257$ kA I = 3,317 kA nana, etca angeno, ary supera nge- I, oc c $I = 7,237$ kA I = 3,317 kA nana, etca angeno, ary supera nge- I, oc c $I = 1,237$ kA I = 3,317 kA I = 3,31	Bpessemparese $=3T_{de}^{-}-0.14s$ $=3T_{de}^{-}-0.14s$ $=3T_{de}^{-}-0.14s$ $=3T_{de}^{-}-0.34s$ $=3T_{de}^{-}-0.34s$ $=3T_{de}^{-}-0.34s$ $k_{a}^{-}=1+e^{-0.074w}-0.34s$ $k_{a}^{-}=1+e^{-0.074w}-0.34s$ $k_{a}^{-}=1+e^{-0.074w}-0.34s$ $k_{a}^{-}=1+e^{-0.074w}-0.34s$ $=3T_{de}^{-}-0.16s$ $=0.02s$ s. momentum request in a compary on the operature in a compary or the compary in the compary	100α, 10 σσ, 10 σσ τ 10 π π 10 π m 10 π m 10 π m 10 π m 10 m 10 m 10 m 10 m 10 m 10 m 10 m 10
Павет, но случајот г начет, но случајот г Приност КГГ), ќе ја пламе Приност КГГ), ќе ја пламе Приност КГГ), ќе ја пламе премет на прихуциунања – чрење на прихуциунања на средне на прихуциунања случаје се ја премет Во онај случај је ќ Да случај се ќ Призицијата се ја премет Да случај се ќ Призицијата се ја премет Да случај се ќ Призицијата се ја премет Да случај се ќ Призицијата се ја премет Ла случај се ќ Призицијата се ја премет Ла случај се ќ Да случај се ќ Ла случај се бала се случа се случа се бала се случа се сл	огота кусята вреза наста селанита сатунија; P = 17,19 kA P = 17,19 kA P = 13,103 kA I = 4,167 kA I = -2,17 k	$\label{eq:second} \hline \begin{array}{ c c c c c } \hline & Bpearemparese}{ = 37_{m}^{2} - 0.14s} \\ = 37_{m}^{2} - 0.14s} \\ \hline & 37_{m}^{2} - 0.34s \\ = 37_{m}^{2} - 0.34s \\ \hline & sample - 0.14s \\ \hline &$	
Паке цен сорчајат г накен, во случајат намаче Пушков (КГ), бе ја пламе Пушков (КГ), бе ја пламе пректен Прана сорчаја еб (Суптранлаеттен Трана – време на прихуциунања карана на среднованот (Суптранлаеттен Трана Во онај случаја еб Да – $g (-1) = (x - y - x)$ По онај случаја еб По онај случаја еб По онај случаја (С Да – $g (-1) = (x - y - x)$ По онај случаја (С По онај случаја (С По онај случаја (С По онај случаја (С По онај случаја) (С По онај случаја) Суптрана (С Суптраниветтен Трана – ареме на прихуциу в (Суптраниветтен Трана – зреме на прихуциу в (Суптраниветтен Трани – зреме на прихуциу в (Суптраниветтен Трани – зреме на прихуциу в (Суптраниветтен Трани – зреме на прихуциу в (Суптраниветтен Трана – зудан с коефициет (Суптраниветтен (Суптраниветтен Трана – зудан с коефициет (Суптраниветтен (Суптр	огот вусята врезя целт врезя целт самита сатучија; P = 17,19 kA P = 17,19 kA P = 13,103 kA I = 4,167 kA I = -6,167 kA I = 2,-7 $Z = 1$ m (M me $Z_{4} = Z_{4} = Z_{4} = Z_{4}$ I = 0,064 + (0,3),100 - (0,3),100 - (0,64 + (0,64 +	Bpessemparese $=3T_{ab}^{-}-0.14s$ $=3T_{ab}^{-}-0.14s$ $=3T_{ab}^{-}-0.34s$ $=3T_{ab}^{-}-0.34s$ $=3T_{ab}^{-}-0.34s$ $k_{ab}^{-}=1+e^{-0.074w}-0.34s$ $k_{ab}^{-}=1+e^{-0.074w}-0.34s$ $k_{ab}^{-}=1+e^{-0.074w}-0.34s$ $k_{ab}^{-}=1+e^{-0.074w}-0.34s$ $k_{ab}^{-}=1+e^{-0.074w}-0.34s$ $k_{ab}^{-}=1-e^{-0.074w}-0.34s$ $k_{ab}^{-}=1-e^{-0.074w}-0.34s$ $metric and appearing \frac{1}{2}M_{ab}^{-}=0.4s =3T_{ab}^{-}=0.16s =0.37c_{ab}^{-}=0.16s =0.37c_{ab}^{-}=0.16s =0.37c_{ab}^{-}=0.16s =0.37c_{ab}^{-}=0.16s =0.37c_{ab}^{-}=0.16s =0.37c_{ab}^{-}=0.16s$	ізата та на сант та на сант та на сант сант та на сант сант та на сант та на сант та на сант та на сант с
Паренти и при при при при при при при при при	огл вусята вреза всет за реда всет садиата ступија;	Bpessemparese $=3T_{de}^{-}-0.14s$ $=3T_{de}^{-}-0.14s$ $=3T_{de}^{-}-0.34s$ $=3T_{de}^{-}-0.34s$ $=3T_{de}^{-}-0.34s$ $k_{a}^{-}=1+e^{-0.074w}-0.34s$ $k_{a}^{-}=1+e^{-0.074w}-0.34s$ $k_{a}^{-}=1+e^{-0.074w}-0.34s$ $k_{a}^{-}=1+e^{-0.074w}-0.34s$ $k_{a}^{-}=1+e^{-0.074w}-0.34s$ $k_{a}^{-}=0.082s$ $T_{de}^{-}=0.028s$ $r_{a}^{-}=0.028s$ accumulation $=3T_{de}^{-}=0.16s$ $=3T_{de}^{-}=0.16s$ $=3T_{de}^{-}=0.16s$ $=3T_{de}^{-}=0.16s$ $=3T_{de}^{-}=0.16s$ $=3T_{de}^{-}=0.16s$ $=3T_{de}^{-}=0.16s$ $=3T_{de}^{-}=0.16s$ $=3T_{de}^{-}=0.16s$ $=0.028$ accumulation material mature for the end of th	ірата та на та на
на чело случајот г Закча, во случајот г случајот ГЛ је ја лимане Пушко КГЛ је ја лимане Пушко КГЛ је ја лимане 1 разна – време на присупулања – ударен коефициент на 10 <i>К</i> усана деса масели Де $= 2(-1) - $	огл кусята вреза нест селенита сатунија: P = 17,19 kA P = 17,19 kA P = 13,103 kA I = 4,167 kA I = 2,17 kC I = 1,100 kG I = 0,064 + (0.3),100 - (0.3),100 - (0.6),100,31,	Bpessemparese $=3T_{de}^{-} - 0.14s$ $=3T_{de}^{-} - 0.14s$ $=3T_{de}^{-} - 0.14s$ $=3T_{de}^{-} - 0.34s$ $=3T_{de}^{-} - 0.34s$ $k_{qe} = 1 + e^{-0.074s} - 0.35s$ $k_{qe} = 0.16s + 0.559$; $T_{de}^{-} = 0.028 + 3.28s$ $k_{1}^{-} = 1.28s + 3.28s$ $k_{1}^{-} = 0.12s + 3.28s$ $k_{2}^{-} = 0.12s + 3.28s$ <tr< td=""><td>γјата га на сега γјата за на сега ујата ца на сега ујата (γ), но одот</td></tr<>	γјата га на сега γјата за на сега ујата ца на сега ујата (γ), но одот
Павет, но случајот г закен, но случајот г Пушкот КГГ), бе ја пламе Пушкот КГГ), бе ја пламе Пушкот КГГ), бе ја пламе – преме на присупулање – преме на присупулање – преме на присупулање Во онај случаје бе ја презент Поштану имале: $X_{\mu} = 2i - (2 - n)i / J,$ $Z_{\nu-m} = Z_{\nu} - (2, n)i / J,$ $Z_{\nu-m} = Z_{\nu} - (2, n)i / J,$ Поштану имале: $X_{\mu} = 2j - R_{\mu} - R_{$	огл кусята вреза наст садиата служија; P = 17,19 kA P = 17,19 kA P = 13,103 kA I = 4,167 kA I = 2,17 kA I = 0,064 + (0,3),100 - (0,3),100 - (0,64) + (0,64) + (Bpessemparese $=3T_{de}^{-} - 0.14s$ $=3T_{de}^{-} - 0.14s$ $=3T_{de}^{-} - 0.14s$ $=3T_{de}^{-} - 0.34s$ $=3T_{de}^{-} - 0.34s$ $k_{qe}^{-} = 1 + e^{-0.017w} - 1.915$. m (second K2): $=7T_{de}^{-} - 0.34s$ $=3T_{de}^{-} - 0.34s$ $=3T_{de}^{-} - 0.15s$ $=5.50s$ $=0.15s$ $=0.15s$ <t></t>	1 1 1 1 1 1 0 0 1 1
на чело случајот г закача, во случајот г случајот случајот с Гуптрантавентен Транан – преме на придуцујања – преме на придуцујања – одарен косфициент на 20 Луден косфициент на 20 Луден косфициент на 20 Луден косфициент на 21 Луден косфициент на 22 $\mu = 2(-1/2)$ Лу 22 $\mu = 2(-1/2)$ Лу 23 $\mu = 2(-1/2)$ Лу 24 $\mu = 2(-1/2)$ Лу 25 $\mu = 2(-1/2)$ Лу 26 $\mu = 2(-1/2)$ Лу 27	огл кусята вреза наст садиата служија; P = 17,19 kA P = 17,19 kA P = 13,103 kA I = 4,167 kA I = 2,7 $E = 2,767$ kA $I = 0,064 + 0,233 \cdot 105,757$ 92 + 108 = 116 mC; 98 + 559 = 757 mC; Ω . $I = 10,064 + 0,233 \cdot 105,757$ 92 + 108 = 116 mC; 98 + 559 = 757 mC; Ω . $I = 10,064 + 0,233 \cdot 105,757$ $I = 16, -14, -133 \cdot 105, -157$ I = 16, -14, -14, -14, -14, -14, -14, -14, -14	Bpe unequeres $=3T_{de}^{-}-0.14s$ $=3T_{de}^{-}-0.14s$ $=3T_{de}^{-}-0.34s$ $=3T_{de}^{-}-0.34s$ $=3T_{de}^{-}-0.34s$ $=3T_{de}^{-}-0.34s$ $k_{s} = 1 + e^{-0.074m} = 1.915$ m (scene K2); $=7T_{de}^{-}-0.14s$ $=3T_{de}^{-}-0.14s$ $=3T_{de}^{-}-0.14s$ $=3T_{de}^{-}-0.15s$ $=3T_{de}^{-}-0.16s^{-}$ $=3T_{de}^{-}-0.028s$ $=3T_{de}^{-}-0.028s$ $=3T_{de}^{-}-0.16s^{-}$ $=3T_$	
The network of the set of the se	огл кусята вреза наст селенита сатунија; P = 17,19 kA P = 17,19 kA P = 13,103 kA I = 4,167 kA I = 2,17 kC $I = 0,064 + 0,233 \cdot 105,75$ 92 + 108 = 116 mCl; 98 + 559 = 757 mCl; $\Omega = 10,064 + 0,233 \cdot 105,75$ 92 + 108 = 116 mCl; 98 + 559 = 757 mCl; $\Omega = 10,064 + 0,233 \cdot 105,75$ 10,074 $I = -6,357$ kA I = 3,377 kA I = 2,377 kA I = 2,377 kA I = 3,317 kA same the aneprotochemic segment is I = 3,317 kA same that sequences a segment and I = 3,317 kA same that sequences a source of the sequences a source of	Bpe unique set $a_3T_{de}^{-}=0.14s$ $a_3T_{de}^{-}=0.14s$ $a_3T_{de}^{-}=0.34s$ noncerns: $a_3T_{de}^{-}=0.34s$ $k_s = 1 + e^{ABTTss} = 1.915$. m (scene K2); $r_s = R_1 + e^{ABTTss} = 1.915$. m (scene K2); $r_s = R_1 + e^{ABTTss} = 1.915$. m (scene K2); $r_s = R_1 + e^{ABTTss} = 1.915$. (6, 4 + J33) G; (121) ² = (0.108 + j.0.559). mperscontinor carging ¹² / _{as} $r_s = 0.052 s$. A_s ; $T_{ss}^{-} = 0.025 s$. A_s ; $T_{ss}^{-} = 0.028 s$. A_s ; $T_{ss}^{-} = 0.16s$ $= 3T_{ss}^{-} = 0.16s$ <	jara in ma γ, πο ο αυτ
The network of the set of the se	ого в усята врезя вся: садинат сатумија; $l^{-2} = 17,19$ kA $l^{-2} = 17,19$ kA $l^{-2} = 13,10$ kA l = 4,167 kA 1 = 2,17 kA 1 = 2,17 kA 1 = 0,064 + 0,233 · 105,75 2 = 108 = 116 mCl; 98 + 559 = 757 mCl; 1 = 0,064 + 0,233 · 105,75 2 = 108 = 116 mCl; 98 + 559 = 757 mCl; 1 = 3,307 kA 3 mCl; $l^{-1} l^{-2} = 8,357 kA 3 mCl; l^{-1} l^{-2} = 8,357 kA 1 = 3,317 kA 1 = 3,317 kA кање на апериодичната 7 na струја на кусата вреза цези правод во мрез 0 to 0 rzoza деза парама 1 = 0 to 0 rzoza desa парама 1 = 0 to 0 rzoza desa парама 1 = 0 to 0 rzoza desa napa 1 = 0 to 0 rzoza desa rzo$	Bpe unique set $=3T_{de}^{-}-0.14s$ $=3T_{de}^{-}-0.14s$ $=3T_{de}^{-}-0.14s$ $=3T_{de}^{-}-0.34s$ $=3T_{de}^{-}-0.34s$ $=3T_{de}^{-}-0.34s$ $k_s = 1 + e^{-0.074s}$ $= 3 + e^{-0.074s}$ $= 1 + e^{-0.074s}$ $= 1 + e^{-0.074s}$	arroa, ", πο e ru
The network of the set of the se	ого в усята врезя вся: самита сатуација: P = 17,19 kA P = 17,19 kA P = 13,103 kA I = 4,167 kA II = 2,17 kA II = 0,064 + /0,331 + (0,57) 92 + 108 = 116 mCl; 98 + 559 = 757 mCl; Ω. 38 mCl = 16, mCl; 98 + 559 = 757 mCl; Ω. 38 mCl = 16, mCl; 98 + 559 = 757 mCl; Ω. 11 II = 11 II = 12 II =	Bpe unequeues $a=3T_{de}^{-}-0.14s$ $a=3T_{de}^{-}-0.14s$ $a=3T_{de}^{-}-0.34s$ $a=3T_{de}^{-}-0.34s$ $b=3T_{de}^{-}-0.34s$ $b=3T_{de}^{-}-0.34s$ $b=3T_{de}^{-}-0.34s$ $b=3T_{de}^{-}-0.34s$ $b=3T_{de}^{-}-0.34s$ $b=3T_{de}^{-}-0.34s$ $b=3T_{de}^{-}-0.16s$ $a=3T_{de}^{-}-0.16s$	diara diara diara diara mine m
The entropy of the second sec	ого в суста вреза васт самита случија: P = 17,19 kA P = 17,19 kA P = 13,10 kA I = 4,167 kA II = 2,-7 $Z = (1, 1, 2, 2, 3, 2, 3, 3, 2, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$	Bpessenguenese $a_3T_{de}^{-}=0.14s$ $a_3T_{de}^{-}=0.14s$ $a_3T_{de}^{-}=0.34s$ noncerns: $a_3T_{de}^{-}=0.34s$ $k_s = 1 + e^{AB/T_{de}} = 1.915$ m (scene K2); $(T_r - R_r) = 4(R_r + T_r)$ a_3 $a_1 = R_r$ <td>ірата (1) 100 6 ги 1000 100 1000 1</td>	ірата (1) 100 6 ги 1000 100 1000 1
The entry of the set	ого в суста вреза васт самита сатучија: P = 17,19 kA P = 17,19 kA P = 13,10 kA I = 4,167 kA I = 2,-7 $Z = (10,100)I = 2,-7$ $Z = (10,100)I = 2,-7$ $Z = (10,100)I = 0,064 + (0.3),51002,1^2 = (6,4 + 33), (15,75)29,+108 = 116 m\Omega;98 + 559 = 257 m\Omega;\Omega = 10,064 + (0.3),5100I = 10,000I = 10,000$	Bpessenguenese $a_3T_{de}^{-}=0.14s$ $a_3T_{de}^{-}=0.34s$ $a_2T_{de}^{-}=0.34s$ noncerns: $a_3T_{de}^{-}=0.34s$ $k_s = 1 + e^{AB/Tar} = 1.915$. m (scene K2); $(T_r - R_r) = 4(X_r + T_r)$ $(a_1 - A_1) = (a_1 $	ірта (1) 100 6 ги 1000 1
Газе цел, со учајот г зачец, во сучајот г Пушенсто КГТ), ќе ја лимане Гуптранлиентен Трани на придупузима – ударен косфициент на По оку сучаје с Во оку сучаје с Бо оку сучаје с Бо оку сучаје с По сучаје с По сучаје с По сучаје с По сучаје с Суптранли арссилошноси $Z_{\mu} = z^{-1} (-t^{-1} \beta) \cdot I$ $Z_{\nu} = z^{-1} (-t^{-1} \beta) \cdot I$ По итану макене $R_{\mu} = R_{\mu} + R_{\mu} = 7$, $X_{\mu} = 2 \wedge T - (1 - t^{-1} \beta) \cdot I$ По итану макене $R_{\mu} = R_{\mu} + R_{\mu} = 7$, $X_{\mu} = 2 \wedge T - (1 - t^{-1} \beta) \cdot I$ (По итану макене $R_{\mu} = R_{\mu} + R_{\mu} = 7$, $X_{\mu} = 2 \wedge T - (1 - t^{-1} \beta) \cdot I$ $X_{\mu} = 2 \wedge T - (1 - t^{-1} \beta) \cdot I$ (По итану макене $R_{\mu} = R_{\mu} + R_{\mu} = 7$, $X_{\mu} = 2 \wedge (1 - t^{-1} \beta) \cdot I$) (По изану прављање на прављање на придупу = 3 T _µ = 0,084 s. – узарек косфициент $R_{\mu} = 1 + c^{0.07} = 12$. О по окј пример јасн и сула раза зависате ок Суптранлентен Пранизентон 1 разливето со со се суската врема косто Суптранлентен Пранизентон срема ка придупу = 3 T _µ = 0,084 s. – узарек косто со се суската ву за насто косто си де (2 - и ка и то то се се на и сула раза зависате ок со то се се на прока ка то то се се на придупу = 3 T _µ = 0,084 s. – узарек косто си се (2 - и ка со то се се на и со то ка се си на придупу = 3 T _µ = 0,084 s. – узарек косто си се (2 - и ка со то се се на на со то се се на придупу = 3 T _µ = 0,084 s. – узарек косто си се (2 - и ка со то се се на на со то се се на придупу = 3 T _µ = 0,084 s. – узарек косто си се (2 - и ка со то се се на на со то се се на придупу на со то се се на придупу на со то се се на придупу = 1 со то	ого в усята врема васт самита сатуација:	Bpessenguenes $a_3T_{de}^{-}$ 0.14s $a_3T_{de}^{-}$ 0.34s $a_3T_{de}^{-}$ 0.34s a_2^{-} 0.04s $a_3T_{de}^{-}$ 0.34s a_{de}^{-} 0.05s </td <td>inroa, inroa, <t< td=""></t<></td>	inroa, inroa, <t< td=""></t<>

Дистифуницивата мрежа се состои од водови, трансформатори и погроплувчи, т.е. главно се состои од паснини слементи. Загоа, во согласност со теленскиота тогрема, неза можем да ја скливатентирање со една паснина гранка (импеданција) со многу голема реактанција (практично $X \rightarrow \infty$).

Став наколы средние (оплиение) се семонечна мобност или "круги мреза". Од друга страна, спетем со бескопечна мобност или "круги токов бреј претлазија систем кај подер санатите събемент содран и токов бреј работат паралелно. Согласно на Тевененовата токрева, сден токов спетов кој одрана активна семонти мосе да се претстана о саре сацинствен генератор со сам. С. (но нашнот случај $E = E^{-1} E^{-1} (d_{eff})$ но сремствиција X која с ецикам на въсмента ракел наци на системот, гадено од точкта на приклучање (даковт "37). Колку е бројот на агрегатите во системот поточен и колку се полозни се инвигите мойслеч (т.с. помали се инвигите виатрешни реактанција току се свивалентната реактација на системот Х_е бе

13

Lana IV. Kyca

биде помала. Ако вкупната моќност на агрегатите тежи кон бесконечност, еквивалентната реактанција на системот ќе тежи кон нулата ($X_e \to 0$). Систем со бесконечна моќност ќе има $X_e^{}=0.$

Систем со бессовления мойонст йе пла X₂=0. Воущист, сов ЕЕС мы содение монетом инстантрана мойонст, т.е. соязнавлетията реактаниція на системот X₂ се сооташ потоземо од 0. Мнутом, честошати тосяните ЕЕС во пресемтияте се регирирата како спесенно об сесовления мойонст. Тоа значително ти одестува и упростува пресемтатите, а добликте резултати и слутите вы устати веден се ресоташ нешто змоземом, што оди во прилог на холомување на сигурноста при проститувансто.

Согласно со напред реченото, еквивалентната шема за директниот систем во транзиентниот период (сведена на 110 kV страна) ќе биде како на слика П.4.5.2 а.

Слика П.4.5.2 б

Сега, со помош на сликата П.4.5.2 б која претставува упростена шема од сликата 4.4.2 a, ќе ја одредиме *влезната импеданција* на директниот систем Z_d (за транзиентниот период), гледана од местото на кусата врека:

 $\underline{Z}_{d} = j20 + j73, 2\Pi j20 = j20 + \frac{j72, 2 \cdot j20}{j93, 2} = j35, 71\Omega \ .$
$$\begin{split} & f 93.2 \qquad -7.5.7112 \, . \\ & Jupecritaria acontonomira na crysjara na kyca apeca <math display="inline">\mathcal{L}_\ell$$
 на местото на kycara apeca ác fuque: \\ & \mathcal{L}_\ell = \frac{\mathcal{E}'}{\mathcal{L}_\ell + \mathcal{L}(k)} = \frac{12U_{\ell \ell}}{\beta 5.71 + \ell} = -/2J35 \, \mathrm{kA} \, . \end{split}

14

Агол на изместување

Замената на брзината ω со аголот на изместување θ во равенката на движење ја вршиме затоа што електричната моќност P_e што синхрониот генератор ја оддава во мрежата може да се изрази во зависност аголот θ и од величините E_q и U.

$$\frac{S_n T_J}{\omega_o} \frac{d^2 \theta}{d^2 t} = P_m - P_e(\theta)$$

турбогенератори $X_d = X_q$

$$P_e = \frac{E_q U}{X_d} \sin \theta = P_M \sin \theta$$

хидрогенератори $X_d > X_q$

MT (NEEC)

$$P_e = \frac{E_q U}{X_d} \sin \theta + \frac{U^2}{2} \frac{X_d - X_q}{X_d X_q} \sin 2\theta$$

внмс

Скопје, 2019 6 / 62

Асинхрона моќност

Се јавува во случајот кога постои релативно движење на роторот и вртливото магнетно поле, т.е. кога е $\omega \neq \omega_o$ и се стреми да ги израмни брзините ω и ω_o

$$P_a = K_p \frac{d\theta}{dt}$$

$$\frac{S_n T_J}{\omega_o} \frac{d^2 \theta}{d^2 t} + K_p \frac{d\theta}{dt} = P_m - P_e(\theta)$$
$$M \frac{d^2 \theta}{d^2 t} + K_p \frac{d\theta}{dt} = P_m - P_e(\theta)$$

константа на инерција

MT (NEEC)

$$M = \frac{S_n T_J}{\omega_o} \left[\frac{\mathrm{MW} \cdot \mathrm{s}^2}{\mathrm{rad}} \right] \quad \text{или} \quad M = \frac{S_n T_J}{360 f} \left[\frac{\mathrm{MW} \cdot \mathrm{s}^2}{^\circ \mathrm{el}} \right]$$

BHMC

за турбоагрегати $T_j = 4 \div 12 \,\mathrm{s}$ за хидроагрегати $T_j = 4 \div 9 \,\mathrm{s}$

Еквивалентирање на група од k агрегати

Повеќе агрегати приклучени на заеднички собирници

$$M_e = M_1 + M_2 + \ldots + M_k = \sum_{i=1}^k M_i$$

$$S_e = S_{n1} + S_{n2} + \ldots + S_{nk} = \sum_{i=1}^k S_{ni}$$

$$T_{Je} = \frac{S_{n1}T_{J1} + S_{n2}T_{J2} + \ldots + S_{nk}T_{Jk}}{S_e} = \frac{\sum_{i=1}^k S_{ni}T_{Ji}}{S_e}$$

идентични агрегати

$$M_e = k \cdot M$$
$$S_e = k \cdot S_n$$
$$T_{Je} = T_J$$

(ロト・@ト・ミト・ミト ミーのへの)

Скопје, 2019 8 / 62

Скопје, 2019 7 / 62

Упростувања

MT (NEEC)

MT (NEEC)

- Занемарување на придушниот момент K_p dθ/dt
 Без придушување осцилациите во преодниот режим ќе траат бесконечно долго време.
 Доколку за решението добиеме дека има осцилаторен карактер тоа ќе значи дека системот е стабилен.
- Занемарување на дејството на турбинскиот регулатор
 Турбинскиот регулатор делува за 0,5 до 1 s од почетокот на преодниот режим. Но тој нема да ја измени сликата на проблемот, бидејќи прашањето дали системот е стабилен или не е веќе решено во периодот кога турбинскиот регулатор сè уште не проработил.
- Занемарување на испакнатоста на половите кај хидрогенераторите

$$\frac{E_q U}{X_d} \sin \theta \gg \frac{U^2}{2} \frac{X_d - X_q}{X_d X_q} \sin 2\theta \quad \Rightarrow \quad P_e = \frac{E_q U}{X_d} \sin \theta$$

Амплитудата на вториот хармоник изнесува обично само 10%–15% од амплитудата на основната синусоида и има многу мало влијание на преодните процеси.

Модел на синхрон генератор при анализите на динамичка стабилност

BHMC

Во преодните режими, со оглед на кусото времетраење на суптранзиентниот период, за сето време додека трае преодниот процес ќе можеме да сметаме дека реактанцијата на синхрониот генератор е еднаква на транзиентната реактанција X'_d .

MT (DEEC)

Скопје, 2019 15 / 62

Статичка стабилност на генератор

$$\begin{split} \Delta P &= -P_M \cos \theta_o \cdot \Delta \theta \\ \Delta P &= - \left. \frac{dP}{d\theta} \right|_o \cdot \Delta \theta = -P_s \Delta \theta \\ P_s &= \left. \frac{dP}{d\theta} \right|_o = P_M \cos \theta_o \quad \text{синхронизациона моќност} \\ M \frac{d^2 \theta}{dt^2} &= P_m - P_e = -P_s \Delta \theta \\ \frac{d^2 \theta}{dt^2} + \frac{P_s}{M} \Delta \theta = 0 \\ \frac{d^2 \Delta \theta}{dt^2} + \frac{P_s}{M} \Delta \theta = 0 \\ \Delta \theta(t) &= K_1 e^{r_1 t} + K_2 e^{r_2 t} \\ r^2 + P_s / M = 0 \\ r_{1,2} &= \pm \sqrt{-P_s / M} \end{split}$$

Скопје, 2019 19 / 62

Скопје, 2019 20 / 62

Статичка стабилност на генератор

Ако е $P_s > 0$

MT (NEEC)

генераторот е стабилен

MT (NEEC)

Ако е ${\cal P}_s < 0$

Статичка стабилност на генератор

Метод на мали осцилации

Линеаризација на диференцијалните равенки

$$\begin{split} M_i \frac{d^2 \theta_i}{dt^2} &= \Delta P_i \approx \sum_{j=1}^n \left. \frac{\partial P_i}{\partial \theta_j} \right|_o \cdot \Delta \theta_j \\ M_i \frac{d^2 \Delta \theta_i}{dt^2} \approx \sum_{j=1}^n \left. \frac{\partial P_i}{\partial \theta_j} \right|_o \cdot \Delta \theta_j \\ \Delta \theta_1'' + A_{11} \Delta \theta_1 + A_{12} \Delta \theta_2 + \ldots + A_{1n} \Delta \theta_n = 0 \\ \Delta \theta_2'' + A_{21} \Delta \theta_1 + A_{22} \Delta \theta_2 + \ldots + A_{2n} \Delta \theta_n = 0 \\ &\vdots \\ \Delta \theta_n'' + A_{n1} \Delta \theta_1 + A_{n2} \Delta \theta_2 + \ldots + A_{nn} \Delta \theta_n = 0 \\ A_{ij} &= \left. \frac{1}{M_i} \cdot \left. \frac{\partial P_i}{\partial \theta_j} \right|_o \\ \Delta \theta_i &= \sum_{j=1}^n C_{ij} e^{r_j t} \\ \Delta \theta_i &= \sum_{j=1}^n$$

Метод на мали осцилации

$$\Delta \theta_i = \sum_{j=1}^n C_{ij} e^{r_j t}$$

За решението да биде осцилаторно или придушено осцилаторно (системот е стабилен) треба сите r_j да се комплексни броеви со реални делови помали или еднакви на нула.

Вредностите r_j се сопствени вредности на матрицата

$$\mathbf{A} = \begin{bmatrix} A_{11} & A_{12} & A_{13} & \cdots & A_{1n} \\ A_{21} & A_{22} & A_{23} & \cdots & A_{2n} \\ \vdots & \vdots & \vdots & & \vdots \\ A_{n1} & A_{n2} & A_{n3} & \cdots & A_{nn} \end{bmatrix}$$

Скопје, 2019 24 / 62

Скопје, 2019 23 / 62

Решение во Matlab

MT (NEEC)

MT (NEEC)

r = eig(A)

Динамичка стабилност на EEC

Анализи на преодните електромеханички процеси до кои доаѓа при големи пореметувања

BHMC

BHMC

- Нагли вклучувања или исклучувања на големи потрошувачи
- Промените во конфигурацијата на мрежата: вклучувања или исклучувања на поважни водови или трансформатори
- Наглите испади на големи генераторски единици
- Сите видови на куси врски во ЕЕС

Нумеричко решавање на диференцијални равенки

- Во ЕЕС решенијата на диференцијалните равенки, се функции со кои што е дадена временската промена на напон, струја, агол на роторот на генератор итн.
- Егзактното решавање на диференцијалните равенки ги дава овие функции во аналитички облик со сложени изрази од независната променлива (време).
- Инженерскиот пристап кон добивањето на решението е поинаков затоа е сосема доволно да го познаваме решението дадено во нумерички облик од кој што можеме да ги извлечеме сите потребни заклучоци.
- Нумеричкото решение е дадено во вектори кои што содржат нумерички вредности на функциите кои што ги бараме за одредени вредности на независната променлива (одредени временски моменти).
- Во Matlab постојат повеќе методи за нумеричко решавање на системи диференцијани равенки од прв ред како што се ode23, ode45, ode113, ode15s, ode23s, ode23t и ode23tb.

BHMC

Скопје, 2019 37 / 62

(ロ)、(問)、(E)、(E)、(E)、(O)()

Скопје, 2019 39 / 62

Скопіе. 2019 38 / 62

Општ облик на равенките

MT (NEEC)

Решавање на системи диференцијални равенки од прв ред од следниот облик

$$\frac{dy_1}{dt} = f_1(t, y_1, y_2, \dots, y_n),$$

$$\frac{dy_2}{dt} = f_2(t, y_1, y_2, \dots, y_n),$$

$$\vdots$$

$$\frac{dy_n}{dt} = f_n(t, y_1, y_2, \dots, y_n),$$

Диференцијалните равенки треба да бидат така што од левата страна ќе бидат дадени првите изводи на зависните променливи y_1, y_2, \ldots, y_n , додека од десната страна може да има изрази од произволен облик кој што може да ги содржи сите зависни променливи како и за независната променлива t.

Пример 1

MT (NEEC)

MT (NEEC)

Го разгледуваме следниот едноставен систем од 2 диференцијални равенки од прв ред

$$\frac{dy_1}{dt} = 2 \cdot y_1 - 0,001 \cdot y_1 \cdot y_2,
\frac{dy_2}{dt} = -10 \cdot y_2 + 0,002 \cdot y_1 \cdot y_2,$$

со почетни услови $y_1(0)=5000$ и $y_2(0)=100$. При тоа, ќе ги определиме функциите $y_1(t)$ и $y_2(t)$, како и нивните максимални вредности.

Метод на Ојлер

Методот на Ојлер нема практична примена и тој само ќе ни послужи да го илустрираме концепот за нумеричко решавање на диференцијални равенки.

$$y' = f(t, y)$$

интервалот [a, b] го делиме на n подинтервали

$$t_i = a + i \cdot h, \quad i = 0, 1, 2, \dots n,$$

чекорот е h = (b - a)/nразвивање на функцијата во Тајлоров ред

$$y(t_0 + h) = y(t_0) + h \cdot y'(t_0) + \frac{1}{2} \cdot h^2 \cdot y''(t_0) + O(h^3).$$

ги занемариме членовите од втор и повисок ред и пишуваме $y_1=y(t_0+h)$ и $y_0=y(t_0)$

$$y_1 = y_0 + h \cdot f(t_0, y_0).$$

 $t_{i+1} = t_i + h, \quad y_{i+1} = y_i + h \cdot f(t_i, y_i), \quad i = 0, 1, 2, \dots m$

Скопіе. 2019 41 / 62

Скопје, 2019 42 / 62

Пример 2

MT (NEEC)

MT (NEEC)

Со методот на Ојлер ќе пробаме да ја решиме диференцијалната равенка

 $y' = y, \quad y(0) = 1,$

во интервалот [0,4], при што ќе користиме n=8 подинтервали (h=0,5). За оваа равенка го знаеме аналитичкото решение $y=e^t$.

Во овој случај имаме $y_{i+1} = y_i + h \cdot y_i$, според тоа постапката за решавање на равенката е следната

Пример 2

Од резултатите гледаме дека последната вредност $y_8=25,62891$ се разликува од точната вредност $e^4=54,59815$ за -53,1% што е многу голема грешка.

Ако сакаме да постигнеме поголема точност треба да го зголемиме бројот на точки. На пример за n=1000 грешката кај y_8 изнесува -0,8%.

programi/ojler_primer1.m

1
clc; clear;
y(1) = 1; t(1) = 0; n = 8; h = 4/n;
for i = 1:n
t(i+1) = t(i) + h;
y(i+1) = y(i) + h * y(i);
fprintf('%i %.lf %8.5f\n', i, t(i+1), y(i+1));
end
greska = (y(n+1)/exp(t(n+1)) - 1) * 100
glot(t, y, '--ko', t, exp(t), 'k');

Модифициран метод на Ојлер

programi/ojler.m

1
function [t, y] = ojler(f,a,b,y0,n)
2
h = (b - a) / n;
3 y(1,:) = y0;
4 t(1) = a;
5 for i = 1:n
6 t(i+1,1) = t(i) + h;
7 y1 = y(i,:) + h * f(t(i), y(i,:))';
8 y(i+1,:) = y(i,:) + h * (f(t(i), y(i,:)) + f(t(i), y1))'/2;
9 end

Со функцијата ojler можеме да ја решиме диференцијалната равенка y' = y при почетен услов y(0) = 1 на следниот начин

programi/ojler_primer2.m

・ コン・ 白マン ・ 日マン ・ 日マン

= nac

Скопје, 2019 46 / 62

1 clc; clear; 2 f = @(t, y) y; 3 [t, y] = ojler(f,0,4,1,35); 4 greska = (y(end)/exp(t(end)) - 1) * 100 5 plot(t, y, '--ko', t, exp(t), 'k');

со n=35 со модифицираниот метод на Ојлер се добива грешка од -0,8%

Метод на Рунге-Кута

MT (NEEC)

Едноставниот чекор кој се користи во секој подинтервал *i* според методот на Ојлер може да се употреби како "пробен" чекор до средината на подинтервалот. Потоа, пресметаната вредност во средната точка може да се искористи за пресметка на "вистинскиот" чекор за целиот подинтервал.

 $t_{i+1} = t_i + h$ $k_1 = h \cdot f(t_i, y_i)$ $k_2 = h \cdot f(t_i + \frac{h}{2}, y_i + \frac{k_1}{2})$ $y_{i+1} = y_i + k_2, \quad i = 0, 1, 2, \dots n.$

Метод на Рунге-Кута

MT (REEC)

MT (NEEC)

Постапката со "пробно" движење низ подинтервалот во повеќе мали чекори може да продолжи и понатаму, со што се добиваат методи од класата на Рунге-Кута од повисок ред. Најпознат од тие методи е методот на Рунге-Кута од 4 ред.

BHMC

$$t_{i+1} = t_i + h,$$

$$k_1 = h \cdot f(t_i, y_i),$$

$$k_2 = h \cdot f(t_i + \frac{h}{2}, y_i + \frac{k_1}{2}),$$

$$k_3 = h \cdot f(t_i + \frac{h}{2}, y_i + \frac{k_2}{2}),$$

$$k_4 = h \cdot f(t_i + h, y_i + k_3),$$

$$y_{i+1} = y_i + \frac{k_1 + 2 \cdot k_2 + 2 \cdot k_3 + k_4}{6}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Скопје, 2019 48 / 62

Скопіе, 2019 47 / 62

Метод на Рунге-Кута

programi/rk4.m

 $\begin{array}{c} 1 \\ function [t, y] = rk4(f, a, b, y0, n) \\ 2 \\ h = (b - a) / n; \\ 3 \\ y(1, :) = y0; \\ 4 \\ t(1) = a; \\ 5 \\ for i = 1:n \\ 6 \\ k1 = h * f(t(i) + h/2, y(i, :) + k1/2)'; \\ 8 \\ k3 = h * f(t(i) + h/2, y(i, :) + k2/2)'; \\ 8 \\ k4 = h * f(t(i) + h, y(i, :) + k3)'; \\ 10 \\ t(i+1, 1) = t(i) + h; \\ 11 \\ y(i+1, :) = y(i, :) + (k1 + 2*k2 + 2*k3 + k4)/6; \\ 12 \\ end \end{array}$

Решението на диференцијалната равенка y' = y при почетен услов y(0) = 1 можеме да го добиеме со функцијата rk4 на следниот начин

programi/rk4_primer1.m

1 clc; clear; 2 f = @(t, y) y; 3 [t, y] = rk4(f,0,4,1,8); 4 greska = (y(end)/exp(t(end)) - 1) * 100 5 plot(t, y, '--ko', t, exp(t), 'k');

само со 8 точки, n=8, добиваме грешка од -0,1%

► < Ξ ► Ξ < つ へ へ</p>
Скопје, 2019 49 / 62

A D F A

Пример 3

MT (NEEC)

Разгледуваме RC коло кое што е приклучено на генератор со константен напонE.Потребно е да го определиме и нацртаме временскиот тек на напонот u(t) за следните бројни вредности $R=1000~\Omega,~C=100~\mu{\rm F}$ и $E=12~{\rm V}.$ Кондензаторот на почетокот бил празен.

 $0,\!6$

 0,8

1

・ロト・1回ト・1回ト・1回ト・1回・1000

Скопје, 2019 51 / 62

0,4

0

MT (NEEC)

 0,2

Пример 4

Разгледуваме RLC коло кое што е приклучено на генератор со константен напон E. Потребно е да ги определиме и нацртаме временскиот тек на напонот u(t) и струјата i(t) за следните бројни вредности $R=3,6~\Omega;\,L=0,57~{\rm H};\,C=100~\mu{\rm F}$ и $E=12~{\rm V}.$ Кондензаторот на почетокот бил празен, а струјата во калемот била еднаква на нула.

MT (NEEC)

Пример 5

Го разгледуваме системот од задачата 5.5 од учебникот. Во тој систем настанала трифазна куса врска на еден од водовите во непосредна близина на прекинувачот P_2 . Во задачата се разгледуваат три различни режими на работа на генераторот и соодветно на тоа имаме три аглови карактеристики на моќност $P_e(\theta) = P_{Mi} \cdot \cos \theta$

- 1. нормален работен режим со $P_{M1} = 2,26 \, \text{pu}$,
- 2. режим на трифазна куса врска со $P_{M2} = 0$,
- 3. режим на работа по исклучувањето на кусата врска, кога повредениот вод е исклучен $P_{M3}=1,603\,{\rm pu}.$

Да се нацртаат кривите $\theta(t)$ и $f(t) = 50 + \Delta \omega(t)/18.000$ за следните два случаја

- а) кусата врска се исклучува по $0,15~{
 m s}$,
- б) кусата врска се исклучува по 0, 17 s.

За генераторот е познато дека пред настанувањето на кусата врска работел со моќност $P_0=P_{
m meh}=1\,{
m pu}.$ Исто така, е позната константата на инерција $M=3,7\cdot10^{-4}\,{
m pu}.$

Скопје, 2019 55 / 62

Скопје, 2019 57 / 62

Пример 5

MT (NEEC)

За анализата да се користи наједноставниот механички модел на генератор кој е даден со следните две диференцијални равенки.

$$\frac{d(\Delta\omega)}{dt} = \frac{P_{\rm m} - P_{\rm e}(\theta)}{M}$$
$$\frac{d\theta}{dt} = \Delta\omega,$$

каде што со $\Delta \omega$ е означена промената на аголната брзина на вртење во однос на номиналната.

Забелешка: $\Delta f = \Delta \omega / 18.000$ затоа што во задачата аглите се изразени во електрични степени, а не во радијани (инаку би било $\Delta f = \Delta \omega / (2\pi)$) – при $f = 50~{
m Hz}$ роторот прави $50\cdot 360 = 18.000$ електрични степени во секунда.

Пример 5а

MT (NEEC)

programi/rk_primer3.m

a EEC $\theta' = 180^{\circ} - \theta = 141.4^{\circ} (2.47 \text{ rad}).$

Граничниот агол на исклучување 6/ ќе го добиеме со помош на прави-лото на еднакан површнин. Применувајќи го ова правило, во сообразност со сликата П.5.5.3, добиваме:

 $A^+ = P_0 \cdot (\theta_{ig} - \theta_0); A_{\max}^- = \int_0^{\theta'_1} (P_{M3} \cdot \sin \theta - P_0) \cdot d\theta$

Од условот A⁺ = A⁻_{nus} ја добиваме следната релација: $P_0 \cdot (\theta_{ig} - \theta_0) = P_0 \cdot (\theta_{ig} - \theta'_1) + P_{M3} \cdot (\cos \theta_{ig} - \cos \theta'_1)$ од каде што се добива: $\cos \theta_{ig} = \cos \theta_1' + \frac{P_o}{P_{M3}} \cdot \left(\theta_1' - \theta_o\right), \text{ r.e.}$

 $\cos \theta_{ir} = -0.7815 + (1/1.603) \cdot (2.47 - 0.457) = 0.4743$; $\theta_{ig} = \arccos 0,4743 = 61,7^{\circ}.$

забеленика: За останатите врсти на куси врски, постанката за пресметување на граничкиот агоз на исклучување θ₀ е слична на овде изнесената. Може да се покваке дека граничниот агоз θ₁₀, во општ случај, се пресметува со помош на следнита релинија:

секостан); двофазна куса врска (k = 2) $X_k = 0,0443$ ри; $P_{M2} = 1,116$ ри; $\theta_{02} = 121,4^\circ$; двофазна к. врска со земја (k = 2x); $X_k = 0,0224$ ри; $P_{M2} = 0,746$ ри; $\theta_{02} = 84,1^\circ$.

a na EEC Enana V. Cm.

Пример 5.6. Се посматра повторно проблемот од примерот 5.5. Со примена на методот "чекор по чекор" да се пресвета граничното преве на неслучуване (д. на се нацира гранита (И) за случувто так уста презел би се исклучина пред да се доститие граничното агол на послучуване (д. ререметтите да свящите од пременетическа). За генераторот се познати съедините правителни податоци: помпиална привидва моблест S_{2}^{-1} (ре дреме на завет 77—66.85). Решение:

13

- Константата на инерција на агрегатот (изразена во pu) ќе биде:
- Koncreatura na unequaja na arperatro (ropacana no *pu*) ke duge: $M = S_k T / m^2 = 1.666 (18,000 = 3,7.10^{-1} p.u.$ Tio nacranyamaero na sycara nposa ke ce jasu дебазане na soošnocrutre ΔP (is souscentrure) saj renegaratopor, npi uro, ведицан na noverosor, *glosanasor AP* / ke sunecysas: $t = 0 P_m = P_m = const. P_j(D) = 0 \Delta P = \Delta P(0) = P_m P_m(0) = P_m$.
- На крајот на првиот временски интервал ($t = \Delta t$), релативната аголната брзина на вртење на роторот на генераторот ω' ќе изнесува: $\omega'_1 = \omega'_0 + \alpha_0 \cdot (\Delta t/2) = 0 + P_0/M \cdot (\Delta t/2) = 0 + 2,7 \cdot 10^{-3} \cdot 0,025 = 67,5 (°el/s).$
- додека прирастот на аголот на изместување што ќе се оствари во текот на првиот временски интервал $\Delta \theta_i$ ќе биде:
 - $\Delta \theta = \omega \cdot \Delta t = 67.5 \cdot 0.05 = 3.375^{\circ} \approx 3.4^{\circ}$.

 $\theta_1 = \theta_0 + \Delta \theta_1 = 26,2^\circ + 3,375^\circ = 29,6^\circ$

 $a_1 = a_{n-1}$ по ставручање a_n што ќе се има на крајот на првнот временски првал, не око се кработика во наредниот временски интервал, ке била: $a_1 = a_{n-1} = \Delta P_{n-1} / M = (P_n - P_{1n}, \sin \theta_i) / M = P_i / M = 2.71 e^{i} c^{(1)}_{(1)}$. на крајот на вторнот интервал, г. с. во монетот t = 2.4t ќе иманс:

The keylor has arophot intropied, i.e. to submetter t = 2.54 is $\omega'_2 = \omega'_1 + \alpha_1 \cdot \Delta t = 67, 5 + 2, 7 \cdot 10^{\circ} \cdot 0, 05 = 202, 5^{\circ} \text{ eVs}$, w: $\Delta \theta_2 = \omega'_2 \cdot \Delta t = 202, 5 \cdot 0, 05 = 10, 125^{\circ}$ is $\theta_2 = \theta_1 + \Delta \theta_2 = 39, 7^{\circ}$.

 $\begin{array}{l} \Delta d_{ij} = d_{ij} \Delta = 202.5 \ \delta 0.5 = 10, 155^\circ \ \text{m} \ d_{ij}^2 = d_i + \Delta d_{ij}^2 = 30.7^\circ. \\ \\ \text{Hs} is creasing concentrations as a second subjective interposite transce apolitants parameters of (f) iso depensite interposite parameters in the second stress of the second stress and the second stress interposite of the second stress stress interposite of the second stress transmission of the second stress interposite of the second stress transmission of the second stress$

14

Табела П.5.6.1. Решение **в**(t) во режим на трифазна куса врска

Нека кусата преса биле исклучена по t = 0.15 s (што значи дека системот ќе остане динамички стибинен). Тотащ, со истиот метод, подејки пригота сметса за дисконтимутетот што частавана во змоментот та на исклучување на кусата врезед (t = 0.15 s), ќе добиње нов тек на процести и нова зависност $\theta = d(t)$. Резултитите од пресметните за овој случај се приказни но тобелита 115.6.2

